В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
фриск2
фриск2
31.08.2021 13:09 •  Алгебра

Докажите тождество
1) (sina-cosa)^2=1-sin2a
2) cos^4a-sin^4a=cos2a
3) 2cos^2a-cos2a=1​

Показать ответ
Ответ:
nasyi
nasyi
16.05.2023 12:58
Y=|3-x| Сначала построй график функции 3-x. Это будет прямая. Затем, все, что получилось по y<0 (ниже оси x) переносишь. С таким же иксом, но противоположным по модулю y. На первом фото график, который должен получиться (пунктир не учитывай, это для наглядности).

y=||x-1|-2|

Сначала строишь график функции y=|x-1|-2 . Это будет функция модуля со сдвигом вправо на 1 и вниз на 2. Затем вновь выполняешь перенос всего, что ниже оси x вверх с таким же иксом, но противоположным по модулю игриком.
Фото 2.

Сразу говорю, что этот перенос будет везде, где стоит общий модуль, т.к. значения этой функции не могут быть отрицательными!)
Построить график функции y= | 3- x | y= | | x-1 | -2 |
Построить график функции y= | 3- x | y= | | x-1 | -2 |
0,0(0 оценок)
Ответ:
Илона2407
Илона2407
18.12.2022 18:22
Результаты исследования графика функции

Область определения функции. ОДЗ: Точки, в которых функция точно неопределена:x=2.00, x=-2.00.

Так как функция имеет 2 разрыва, то её область определения имеет 3 промежутка. От -00 до +00 на всех участках функция убывает.

На промежутках убывания производная функции отрицательна.

Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в 2*x/(x^2-4). 
Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:2*x/(x^2-4) = 0 
Решаем это уравнение здесь и его корни будут точками пересечения с X: x=0. Точка: (0, 0)
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-4*x^2/(x^2 - 4)^2 + 2/(x^2 - 4)=0
Решаем это уравнение и его корни будут экстремумами:Нет решения, значит, нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=16*x^3/(x^2 - 4)^3 - 12*x/(x^2 - 4)^2=0lim y'' при x->+2.00
lim y'' при x->-2.00
(если эти пределы не равны, то точка x=2.00 - точка перегиба)
lim y'' при x->+-2.00
lim y'' при x->--2.00
(если эти пределы не равны, то точка x=-2.00 - точка перегиба)
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, 0)x=2.00. Точка: (2.00, ±oo)x=-2.00. Точка: (-2.00
Интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: (-oo, 0] Выпуклая на промежутках: [0,oo) 
Вертикальные асимптоты Есть: x=2.00 , x=-2.00 Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim 2*x/(x^2-4), x->+oo = 0, значит уравнение горизонтальной асимптоты справа: y=0 lim 2*x/(x^2-4), x->-oo = 0, значит уравнение горизонтальной асимптоты слева: y=0 Наклонные асимптоты графика функции: Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim 2*x/(x^2-4)/x, x->+oo = 0, значит совпадает с горизонтальной асимптотой слеваlim 2*x/(x^2-4)/x, x->-oo = 0, значит совпадает с горизонтальной асимптотой справа
Четность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:2*x/(x^2-4) = -2*x/(x^2 - 4) - Нет 2*x/(x^2-4) = -(-2*x/(x^2 - 4)) - Да, значит, функция является нечётной/
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.Применим правило производной частного:ddx(f(x)g(x))=1g2(x)(−f(x)ddxg(x)+g(x)ddxf(x))f(x)=x и g(x)=x²−4.Чтобы найти ddxf(x):В силу правила, применим: x получим 1Чтобы найти ddxg(x):дифференцируем x²−4 почленно:Производная постоянной −4 равна нулю.В силу правила, применим: x² получим 2xВ результате: 2xТеперь применим правило производной деления:(−x²−4)/x²−4)²Таким образом, в результате:( −2x²−8)/(x²−4)²Теперь упростим:−(2x²+8)/(x²−4)²

−(2x²+8)/(x2−4)²


Найдите точки экстремума и определите промежутки возрастания-убывания функции y=2x/(x^2-4) поподробн
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота