Допустим, R(x,y)=xsin(y)+ycos(y) и S(x,y)=xcos(y)-ysin(y). Это не строгое уравнение,т.к. R'(x,y)=xcos(y)-ysin(y)+cos(y)≠cos(y)= dS(x,y). Найдем интегрирующий фактор u(x), такой что u(x)*R(x,y)+u(x)dy* S(x,y)=0. Это означает: (u*R(x,y))'=d(u(x)*S(x,y)):
Допустим, P(x,y)=e^x(xsin(y)+ycos(y)) и Q(x,y)=e^x(xcos(y)-ysin(y)). Это строгое уравнение,т.к. P'(x,y)=e^x(xcos(y)-ysin(y)+cos(y))=dQ(x,y). Введем f(x,y), такой что df(x,y)=P(x,y) и f'(x,y)=Q(x,y): Затем, решение будет для f(x,y)=c1, где c1- произвольная переменная. ; где g(y)- некоторая функция от y.
1) берем производную y!=cosx-(-sinx)=cosx+sinx 2) приравниваем производную к 0 y!=cosx+sinx=0 и решаем это уравнение находим критические точки cosx+sinx=0 делим на cosx 1+tgx=0 tgx=-1 x=-pi/4+pin 3) чертим ось ОХ ,отмечаем критическую точку x=-pi/4 4),берем точки слева и справа от точки х=-пи.4 х1=-пи.3 (левая точка) х2=0 (правая точка) 5) подставляем в уравнение производной y!(-pi/3)=1+tg(-pi/3)=1+(-V3)=1-1.7=-0.7<0 y!(0)=1+tg0=1+pi=1+3.14=4.14>0 получили что у!(-pi/3)<0 y!(0)>0 => производная меняет знак с - на + => имеем минимум в точке х=-пи.4 (если знак производной меняется с + на - то мах у в точке где производная =0 вот и весь алгоритм второй пример решу перед решением у меня сбрасывается решение
Допустим, R(x,y)=xsin(y)+ycos(y) и S(x,y)=xcos(y)-ysin(y).
Это не строгое уравнение,т.к. R'(x,y)=xcos(y)-ysin(y)+cos(y)≠cos(y)=
dS(x,y).
Найдем интегрирующий фактор u(x), такой что u(x)*R(x,y)+u(x)dy*
S(x,y)=0.
Это означает: (u*R(x,y))'=d(u(x)*S(x,y)):
Допустим, P(x,y)=e^x(xsin(y)+ycos(y)) и Q(x,y)=e^x(xcos(y)-ysin(y)).
Это строгое уравнение,т.к. P'(x,y)=e^x(xcos(y)-ysin(y)+cos(y))=dQ(x,y).
Введем f(x,y), такой что df(x,y)=P(x,y) и f'(x,y)=Q(x,y):
Затем, решение будет для f(x,y)=c1, где c1- произвольная переменная.
;
где g(y)- некоторая функция от y.
Сделаем замену f'(x,y)=Q(x,y):
Возьмем g'(y):
Подставим g(y) к f(x,y):
Получаем решение:
2) приравниваем производную к 0 y!=cosx+sinx=0 и решаем это уравнение
находим критические точки
cosx+sinx=0 делим на cosx 1+tgx=0 tgx=-1 x=-pi/4+pin
3) чертим ось ОХ ,отмечаем критическую точку x=-pi/4
4),берем точки слева и справа от точки х=-пи.4
х1=-пи.3 (левая точка) х2=0 (правая точка)
5) подставляем в уравнение производной
y!(-pi/3)=1+tg(-pi/3)=1+(-V3)=1-1.7=-0.7<0
y!(0)=1+tg0=1+pi=1+3.14=4.14>0
получили что у!(-pi/3)<0 y!(0)>0 => производная меняет знак с - на + =>
имеем минимум в точке х=-пи.4 (если знак производной меняется с + на - то мах у в точке где производная =0
вот и весь алгоритм
второй пример решу перед решением у меня сбрасывается решение