Давайте я вам объясню. Координаты, имеют вид (x;y), то есть, если дана некая функция, в нашем случае игрек зависит от икса. Нам требуется лишь подставить значение икса в координате, и посмотреть, будет ли координата игрека равна координате игрека данной функции. Сейчас вы поймете: Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1. А значит, что функция не проходит через точку В.
Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1.
А значит, что функция не проходит через точку В.
y' = 6
2) y = x - 1/2
y' = 1
3) y = x^2 + sinx
y' = 2x + cosx
y'(x0) = 2*pi + cos(pi) = 2*pi - 1
4) y = (x^4)/2 - (3*x^2)/2 + 2x
y' = 1/2 * 4x^3 - 1/2 * 6x + 2 = 2x^3 - 3x + 2
y'(x0) = 2*8 - 3*2 + 2 = 16 - 6 + 2 = 12
5) y = sin(3x-2)
y' = cos(3x-2)*(3x-2)' = 3cos(3x-2)
6) не поняла, что знак "V" обозначает, пусть будет делением
y = 3x^2 - 12/x
y' = 6x - 12*(-1/(x^2)) = 6x + 12/(x^2)
y'(x0) = 6*4 + 12/16 = 24 + 3/4 = 24,75
7) y = 1/(2tg(4x-pi)) + pi/4
y' = -1/(2tg^2(4x-pi)) * 1/cos^2(4x-pi) * 4 + 0 = -2/(tg^2(4x-pi)*cos^2(4x-pi)) = -2/sin^2(4x-pi)