Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.