Чтобы число делилось на 99,то сумма цифр должна делиться на 9 и сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11. 6+2+х+у+4+2+7=21+х+у⇒х+у=6 или 15 6+х+4+7=2+у+2⇒17+х=4+у х+у=6 х=0⇒17=4+6 нет решения х=1⇒18=4+5 нет решения х=2⇒19=4+4 отличается на 11 Число 6224427 х=3⇒20=4+3 нет решения х=4⇒21=4+2 нет решения х=5⇒22=4+1нет решения х=6⇒23=4+0 нет решения х+у=15 х=7⇒24=4+8 нет решения х=8⇒25=4+7 нет решения х=6⇒23=4+9 нет решения х=9⇒26=4+6 нет решения
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
6+2+х+у+4+2+7=21+х+у⇒х+у=6 или 15
6+х+4+7=2+у+2⇒17+х=4+у
х+у=6
х=0⇒17=4+6 нет решения
х=1⇒18=4+5 нет решения
х=2⇒19=4+4 отличается на 11
Число 6224427
х=3⇒20=4+3 нет решения
х=4⇒21=4+2 нет решения
х=5⇒22=4+1нет решения
х=6⇒23=4+0 нет решения
х+у=15
х=7⇒24=4+8 нет решения
х=8⇒25=4+7 нет решения
х=6⇒23=4+9 нет решения
х=9⇒26=4+6 нет решения
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)