Раз по реке она шла меньше времени при большем расстоянии, значит явно шла по течению. Пусть её собственная скорость V, время пути по реке t, тогда верны следующие соотношения(не забудем перевести минуты в часы): 36 = (V+2)*t, 35 = V * (t+1/20) Раскрываем скобки: 36 = Vt+2t 35=Vt+V/20 Вычитаем из второго уравнения первое: 1 = V/20 - 2t Выражаем скорость: V/20 = 1 + 2t V = 20 + 40 t Подставим это соотношение, например, в первое уравнение: 36=(20+40t+2)t 36 = 40 t^2 + 22 t 40 t^2 + 22 t - 36 = 0 Сокращаем: 20 t ^2 + 11 t - 18 = 0 Решаем квадратное уравнение: D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо) t = (-11+-(39,5)) / 40 = {-1,25; 0,7} Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости: V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч. Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Чему равна разность арифметической прогрессии (Xn),если X8=58,X15=16 .?
ответ или решение1
Рябова Мария
Дано: Xn – арифметическая прогрессия;
X8 = 58; X15 = 16;
Найти: d - ?
Формула n-го члена арифметической прогрессии:
Xn = X1 + d (n – 1),
где X1 – первый член прогрессии, d – разность прогрессии, n – количество её членов.
Согласно данной формуле, представим восьмой и пятнадцатый члены заданной прогрессии:
X8 = X1 + d (8 – 1) = X1 + 7d;
X15 = X1 + d (15 – 1) = X1 + 14d.
Из полученных уравнений составим систему и решим ее:
X1 + 7d = 58, (1)
X1 + 14d = 16 (2)
Из (1) уравнения выразим X1:
X1 = 58 - 7d,
Полученное выражение подставляем во (2) уравнение системы:
58 - 7d + 14d = 16;
7d = -42;
d = -6.
Закончим решение системы, подставив полученное значение d в выражение:
X1 = 58 – 7 * (-6) = 100.
ответ: d = -6.
Объяснение:
ответ: d=. -6