В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
loloh333
loloh333
02.11.2020 05:55 •  Алгебра

Докажите тождество x+2 - x-2 = 8x x-2 x+2 x в квадрате - 4 2 (x+5+ 25) * x-5 x-5 x в квадрате = 1

Показать ответ
Ответ:
Luiza3030499
Luiza3030499
26.10.2021 19:36
  Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*ln(x)
Функция определена при всех х>0 
Найдем производную функции
 y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) = 
= x(2ln(x)+1) 
Найдем критические точки
y' =0 или x(2ln(x)+1) =0
     2ln(x)+1 = 0 или ln(х) =-1/2 
                              x = e^(-1/2) =1/e^(1/2) =0,606
На числовой оси отобразим знаки производной
..-..   0+...
!!
00,606
Поэтому функция возрастает если
 х принадлежит (0,606;+бесконечн)
Функция убывает если
х принадлежит (0;0,606)
В точке х=0,606 функция имеет локальный минимум
y( e^(-1/2) ) =   (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18 
Локального максимума функция не имеет
  
0,0(0 оценок)
Ответ:
TINIkorason
TINIkorason
26.10.2021 19:36
Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^3*e^(-x)
Найдем производную функции
 y' =(x^3*e^(-x))' = (x^3)' *e^(-x)+x^3*(e^(-x))' = 3x^2*e^(-x) - x^3*e^(-x) = 
=x^2e^(-x)(3-х) 
Найдем критические точки
y' =0 или x^2*e^(-x)(3-х) =0
                    x1=0   3-х=0 или х2=3
   На числовой оси отобразим знаки производной
 +0+..0-...
!!
0 3
Поэтому функция возрастает если
 х принадлежит (-бескон;3)
Функция убывает если
х принадлежит (3; +бесконечн)
В точке х=3 функция имеет максимум
y(3) =  3^3*e^(-3) = 27/e^3 = 1,34
Локального минимума у функции нет
При приближении к + бесконечность функция стремится к нулю.
При приближении к - бесконечности функция стремится к - бесконечности.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота