Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
Т. к. функция - есть корень квадратный, то подкоренное выражение должно быть неотрицательным, т. е. 4х-х^2>=0 Решим данное неравенство методом интервалов: рассмотрим функцию g=4x-x^2 или g=x(4-x) Функция g обращается в ноль в точках х=0 и х=4, которые числовую прямую разбивают на три промежутка: (-бесконечность, 0], [0,4] и [4,+бесконечность). Определим знак функции g на каждом промежутке: (-бесконечность, 0]: g(-1)=-1*5<0 [0,4]: g(1)=1*3>0 [4,+бесконечности) : g(5)=5*(-1)<0. Таким образом, D(y) =[0,4].
пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые.
В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых.
Остались в левом белые, а в правом белые и черные.
Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые,
и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую.
В самом плохом случае мы вынем все 8 белых и только 9-ую черную.
Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных,
9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку.
Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
4х-х^2>=0
Решим данное неравенство методом интервалов: рассмотрим функцию
g=4x-x^2 или g=x(4-x)
Функция g обращается в ноль в точках х=0 и х=4, которые числовую прямую разбивают на три промежутка:
(-бесконечность, 0], [0,4] и [4,+бесконечность).
Определим знак функции g на каждом промежутке:
(-бесконечность, 0]: g(-1)=-1*5<0
[0,4]: g(1)=1*3>0
[4,+бесконечности) : g(5)=5*(-1)<0.
Таким образом,
D(y) =[0,4].