Домашнее задание. Для каждой из данных функций (№ 1613—1621) найти
наименьший положительный период:
1613. у = sin 2х.
1614. у = cos х/2.
1615. у = tg Зх.
1616. у = cos (1 — 2х).
1617. у = sin x cos x.
1618. у = ctg х/3;
1619. У= sin (3х — п/4).
1620. y= sin корень 2 х
1621. y= sin корень 4 х + cos корень 4 x.
Пространство исходов упорядоченные пары чисел от 1 до 6, например:
(1;6); (2;3), (6;5) и т.п.
Всего таких исходов n = 6*6,
A) m = 5*5. P = (5*5)/(6*6) = 25/36
Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36.
В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6.
Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6.
Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что
P_в + P_г = 1.
1-я лодка х км у + 3 км/ч х/(у +3) ч
2-я лодка 111 - х км у - 3 км/ч (111-х)/(у -3)ч
х/(у + 3) = 1,5 ,⇒ х = 1,5(у +3)
(111-х)/(у -3) = 1,5,⇒ 111 - х = 1,5(у -3) Сложим эти 2 уравнения почленно
получим:
111= 1,5(у +3) + 1,5(у -3)
111 = 1,5у +4,4 + 1,у - 4,5
3у = 111
у = 37(км/ч) - собственная скорость лодки
х = 1,5(у +3) = 1,5(37 +3) = 1,5*40 = 60(км) -1-я лодка проплыла до встречи
111 - 60 = 51(км) - проплыла 2-я лодка до встречи.