В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Lsjsjajj
Lsjsjajj
20.12.2022 22:32 •  Алгебра

Домашняя работа по алгебре 0.5 вынесите общий множитель за скобки


Домашняя работа по алгебре 0.5 вынесите общий множитель за скобки

Показать ответ
Ответ:
24.02.2020 18:33
15, 3, 4, ... ,24,16,4, 7 ,15
упорядочим  (возможны три случая) :
3, 4, 4,7,  15,  15,16,..,24    (медиана 15)
ИЛИ
3, ...4,4,  7  ,15,15,16,24    (медиана 7)
ИЛИ:
3,4,4,7,  ...,  15,15,16,24    (медиана  7<x<15)

сумма всех чисел= (88+х)   (медианой может быть 7 или 15)
количество = 9
среднее =медиане=(88+х)/9
   пусть медиана =7
(88+х)/9 = 7
88+х=63
х=-25
  в этом случае ряд:
-25, 3, 4,4, 7, 15, 15,16,24

    пусть медиана =15
88+х=9*15
х=135-88
х=47
 в этом случае ряд будет:
3,4,4,7,  15, 15,16,24,47

(88+х)/9=х
88+х=9х
8х=88
х=11
  в этом случае ряд будет:
3,4,4,7,  11,  15,15,16,24 
              ответ: медианой может быть:  -25;  11; 47
0,0(0 оценок)
Ответ:
катя5088
катя5088
26.05.2021 16:38

Решить уравнение .

Решение. Если раскрыть скобки и привести подобные слагаемые, то получится уравнение , которое решать весьма сложно. Поэтому воспользуемся другим введем новую переменную  и решим квадратное уравнение . Его корни:  и . Соответственно исходное уравнение будет равносильно совокупности двух уравнений  

или

Таким образом, исходное уравнение четвертой степени имеет два корня  и .

ответ: , .

Пример 2. Решить уравнение x3 – 4x2 + 5x –2 = 0.

Решение. Преобразуем  уравнение:

x3 – 4x2 + 5x – 2 = 0;                    (x3 – 4x2 + 4x) + (x – 2) = 0;

x(x2 – 4x + 4) + (x – 2) = 0;          x(x – 2)2 + (x – 2) = 0;

(x – 2)·(x2 – 2x + 1) = 0;               (x – 2)·(x – 1)2 = 0.

Значит, x – 2 = 0 или (x – 1)2 = 0.

ответ: х = 1 или х = 2.

Пример 3. Решить уравнение .

Решение. Данное уравнение можно решать двумя

Сгруппируем слагаемые следующим образом:

.

Уравнение  не имеет решений, поскольку .

Таким образом,  исходное уравнение имеет единственное решение .

Так как данное уравнение является приведенным и имеет целые коэффициенты, то найдем один его корень подбором среди делителей свободного члена : . Легко убедиться, что  является корнем уравнения. Чтобы найти остальные корни разделим многочлен  на двучлен :

Получим совокупность двух уравнений , которая решена в ответ: .Пример 4. Найти наибольший отрицательный корень уравнения.Решение. Подобрать корни данного уравнения весьма сложно, поэтому воспользуемся следующим приемом: домножим (или разделим) данное уравнение на некоторое число так, чтобы старший член уравнения стал кубом некоторого выражения.Заметим, что , и введем новую переменную . В результате получим уравнение , равносильное исходному. Подбором найдем его корни ,  и , которым будут соответствовать корни исходного уравнения ,  и . Наибольшим отрицательным корнем является .ответ: .Пример 5. Найти  наименьший корень уравнения.Решение. Преобразуем исходное уравнение следующим образом:Введем новую переменную  и получим уравнение . Решим полученное уравнение как квадратное относительно .,,, или .Вернемся к переменной .  Получили четыре решения исходного уравнения. Выберем наименьшее из них. Так как , то , поэтому  – наименьшее решение.ответ: . Пример 6. Решить уравнение.Решение. Введём новую переменную t=2x+1/(3x), тогда получим3t2 + 10t + 7 = 0.Корни этого уравнения: t1 = –1, t2 = -7/3. Рассмотрим два случая:а) t = –1;  2x+(3x)-1=-1; 6x2 + 3x + 1 = 0; дискриминант меньше нуля – корней нет.б) t=-7/3;  2x+(3x)-1=-7/3;  6x2 + 7x + 1 = 0; х = –1 или x=-1/6.ответ: -1; -1/6. Пример 7. Решить уравнениеРешение. Выделим в левой части уравнения полный квадрат и затем с замены переменной сведём его к квадратному уравнению.Пусть новая переменная t=x2/(x+2), тогда получим после упрощения квадратное уравнение t2 + 4t = 5, корнями которого являются числа 1 и –5.Рассмотрим два случая:а) t = 1;      ;        x2 – x – 2 = 0;        x1 = –1 или x2 = 2.б) t = –5;     ;       x2 + 5x + 10 = 0;      решений нет.ответ: -1; 2. Пример 8. Решить уравнение.Решение. Преобразуем это уравнение следующим образом:.Выполним деление каждой дроби:;; .Приведём к общему знаменателю и затем упростим числитель:,.Отсюда следует ответ.ответ: 0; -5/2.             Задания для самостоятельного решения1. Решите уравнения методом разложения на множители:а) x3 + 2x2 + 3x + 6 = 0;                б) x4 – 81 = 0;в) x4 + 4x2 – 21 = 0;                     г) x4 – 8x = 0;д) x4 – 27x = 0;                            е) x3 – 3x – 2 = 0;ж) x3 – 19x – 30 = 0;                    з) 2x3 – x2 – 1 = 0;и) 2x4 +x3 – 2x2 – x = 0.2. Решите уравнения методом введения новой переменной:а) (x2 – 3x)2 + 3(x2 – 3x) – 28 = 0;б) (x2 + 5x)2 –2(x2 + 5x) = 24;в) (x2 –2 x – 1)2 + 3x2 – 6x – 13 = 0;г) (x2 + x + 1)2 – 3x2 – 3x – 1 = 0;д) ;е) ;ж) .3. Решите уравнения методом введения новых переменных (в некоторых уравнениях вначале соответствующим образом сгруппируйте множители, а затем раскройте скобки):а) (2x2 – 3x + 5)2 – 60(2x2 – 3x + 5) = –500;б) (3x2 – x + 1)2 –5(3x2 – x + 1) – 6 = 0;в) (x2 + x + 1)·(x2 + x + 2) = 12;г) (x2 – 2x – 4)·(x2 – 2x – 3) = 2;д) (x + 3)·(x + 1)·(x + 5)·(x + 7) = –16;е) (x + 3)·(x + 1)·(x + 2)·(x + 4) = 3;ж) (x – 2)·(x + 1)·(x – 6)·(x – 3) = 13;з) (x – 2)·(x + 4)·(x + 5)·(x – 3) = 18.4. Решите уравнения:а) ;б) ;в) ;г) ;д) ;е) ;ж) .5. Решите уравнения:а) (x + 2)4 + (x + 4)4 = 82;б) (x – 3)4 + (x + 1)4 = 256;в) (x – 5)4 + (x + 1)4 = 386;г) (x + 5)4 + (x + 3)4 = 16;д) (x –1)5 + (x + 3)5 = 242(x + 1);е) (2x – 3)4 + (2x – 5)4 = 2.6. Решите уравнения:а) ;б) ;в) ;г) ;д) ;е) . ответы
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота