В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
prostopohelnaxyi
prostopohelnaxyi
14.08.2022 10:52 •  Алгебра

Дорешить пример с лимитом lim x-> беск. [ (8x^4+3x^2)^{1/3} - (8x^4+2x^2)^{1/3} ] = [беск - беск] = умножим на "сопряженное", дописав разность кубов и поделив. с дальнейшим решением. [] - это вместо обычных скобок

Показать ответ
Ответ:
солнышко279
солнышко279
04.10.2020 03:29
\lim\limits_{x \to \infty}\left ((8x^4+3x^2)^{ \frac{1}{3} }-(8x^4+2x^2)^{ \frac{1}{3} }\right )=\\\\=\lim\limits_{x \to \infty}\frac{8x^4+3x^2-8x^4-2x^2}{(8x^4+3x^2)^{ \frac{2}{3}}+(8x^4+3x^2)^{\frac{1}{3}}(8x^4+x^2)^{\frac{1}{3}}+(8x^4+2x^2)^{\frac{2}{3}}}}}=\\\\=\lim\limits_{x \to \infty}\frac{x^2}{\sqrt[3]{(8x^4+3x^2)^2}+\sqrt[3]{(8x^4+3x^2)(8x^4+2x^2)}+\sqrt[3]{(8x^4+2x^2)^2}}=\left [\frac{:x^{\frac{8}{3}}}{:x^{\frac{8}{3}}}\right ]

=\lim\limits_{x \to \infty}\frac{1/x^{\frac{2}{3}}}{\sqrt[3]{64+\frac{48}{x^2}+\frac{9}{x^{4}}}+\sqrt[3]{64+\frac{40}{x^2}+\frac{6}{x^4}}+\sqrt[3]{64+\frac{32}{x^2}+\frac{4}{x^4}}}=\\\\=\frac{0}{\sqrt[3]{64}+\sqrt[3]{64}+\sqrt[3]{64}}=0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота