посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
1) (x2-9)(x+4)<0
(x2-9)(x+4)=0
x2-9=0 x+4=0
x2=9 x=-4
x=3,-3
x(-бесконечность;-4)u(-3;3)
2)y2-xy=33 y2-11y-y2=33 -11y=33 y=-3
x-y=11 x=11+y x=11+y x=11-3=8
(8;-3)
3)a1=16, d=20-16=4
an=16+4(n-1)
а)16+4n-4=44
4n+12=44
4n=32
n=8 т.к. 8 целое число, значит подходит
б)16+4n-4=52
4n=40
n=10 подходит
в)4n+12=68
4n=54
n=54\4 нецелое число не подходит
г)4n+12=64
4n=52
n=13 подходит
ответ: подходят варианты а, б и г
4)bn=b1*q^n-1
bn=-128*(-1\2)^n-1
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
5)a)(n+2)!(n+1)>(n+1)!(n+2)
т.к. n!+2!=(n+2)!
n!+1!=(n+1)!, n!=n!, а 1!=1, 2!=1*2=2
Пусть одна из сторон прямоугольника=a, a вторая=b.
Тогда
2a+2b=28(противоположные стороны прямоугольника равны)
и a+b=14(поделили выражение на 2)
a=14-b
диагональ прямоугольника делит его на 2 прямоугольных треугольника
Раасмотрим любой из треугольников
и
по теореме Пифагора :
a*a+b*b=10*10=100
a=14-b, тогда
(14-b)^2(в квадрате)+b^b=100
По формуле квадрата разности раскладываем выражение (14-b)^2
Получаем:
(14-b)^2=14^2-2*14*b+b^b=196-28b+b^2
a*a+b*b=196-28b+b^2+b^2=196-28b+2b^2
196-28b+2b^2=100
Переносим все в левую часть и получаем:
2b^2-28b+96=0
Поделим обе части уравнения на 2:
b^2-14b+48=0
d=B^2-4*A*C
d=196-4*48=4
b1=(14+2)/2=8
b2=(14-2)/2=6
При b=8
a=14-8=6
S=a*b=48см в квадрате
При b=6
a=14-6=8
S=a*b=48см в квадрате
ответ: 48см в квадрате