Пусть число, состоящее из цифр 3, имеет длину n. Тогда его можно расписать как сумму геометрической прогрессии: 3+3*10^1+3*10^2++3*10^(n-1)=3*(10^n-1)/(10-1)=(10^n-1)/3 Это число должно делиться на 17. Значит, и число 10^n-1 должно делиться на 17. 10^n-10(mod 17) или 10^n1 (mod 17) Как известно, из малой теоремы Ферма следует, что a^(p-1)1 (mod p), где p - некоторое простое число, а НОД(a,p)=1. Здесь a=10, p=17. Следовательно, наименьшим n является p-1=16, при котором число, состоящее из 16 троек делится на 17.
Будем отсчитывать угол по часовой стрелке. Т.к. часовая стрелка проходит 360° (полный круг) за 12 часов=720 минут, то ее скорость передвижения 360/720=0,5 градуса в минуту. Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации: 1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°. 2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.
Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации:
1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°.
2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.