обозначим число магазинов x, тогда каждый магазин должен был закупить 175/x ящиков. На самом деле закупили яблоки x-2 магазинов и им досталось по 175/(x-2) ящиков. Зная что каждый магазин дополнительно купил 10 ящиков можно записать
175/(x-2)-175/x=10
175x-175(x-2)=10(x^2-2x)
175x-175x+350=10x^2-20x
10x^2-20x-350=0
решим квадратное уравнение:
D = b2 - 4ac = (-20):2 - 4·10·(-350) = 14400
x1 = (20 - √14400)/(2·10) = -5
x2 = (20 + √14400)/(2·10) = 7
т. к количество магазинов не может быть отрицательным, то ответом будет 7 магазинов
√27 - √108 * (sin(11π/12))^2
Преобразуем подкоренные значения:
√27 = √(3 * 3 * 3) = √(3^2 * 3) = 3√3
√108 = √(2 * 2 * 3 * 3 * 3) = √(6 * 6 * 3) = √(6^2 * 3) = 6√3
√27 - √108 * (sin(11π/12))^2 = 3√3 - 6√3 * (sin(11π/12))^2
Вынесем 3√3 за скобки:
3√3 * (1 - 2 * (sin(11π/12))^2)
По одной из тригонометрических формул (в данном случае формула двойного угла):
cos2x = 1 - 2 * (sinx)^2
Значит
1 - 2 * (sin(11π/12))^2 = cos(11π/12 * 2) = cos(22π/12) = cos(11π/6)
Значит, всё наше выражение приобретает вид:
3√3 * cos(11π/6)
cos(11π/6) - табличное значение, оно равно √3/2
3√3 * √3/2 = (3 * √3 * √3)/2 = (3 * (√3)^2)/2 = (3 * 3)/2 = 9/2 = 4,5
Постарался максимально подробно
обозначим число магазинов x, тогда каждый магазин должен был закупить 175/x ящиков. На самом деле закупили яблоки x-2 магазинов и им досталось по 175/(x-2) ящиков. Зная что каждый магазин дополнительно купил 10 ящиков можно записать
175/(x-2)-175/x=10
175x-175(x-2)=10(x^2-2x)
175x-175x+350=10x^2-20x
10x^2-20x-350=0
решим квадратное уравнение:
D = b2 - 4ac = (-20):2 - 4·10·(-350) = 14400
x1 = (20 - √14400)/(2·10) = -5
x2 = (20 + √14400)/(2·10) = 7
т. к количество магазинов не может быть отрицательным, то ответом будет 7 магазинов