Абсциссой - точки A называется координата этой точки на оси X’X в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.
В прямоугольной системе координат ось X’X называется «осью абсцисс» .
При построении графиков функций, ось абсцисс обычно используется как область определения функции.
Ординатой (от лат. ordinatus - расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см. рис. 1). Если точка C принадлежит положительной полуоси OY, то ордината имеет положительное значение. Если точка C принадлежит отрицательной полуоси Y’O, то ордината имеет отрицательное значение. Если точка A лежит на оси X’X, то её ордината равна нулю.
В прямоугольной системе координат ось Y’Y называется «осью ординат» .
При построении графиков функций, ось ординат обычно используется как область значений функции.
получится дробь, у которой числитель = 2( х + 1) -(х² - х + 1) - 2х + 1=
=2х + 2 - х² + х - 1 - 2х + 1 = - х² + х + 2
В знаменателе : х³ +1
Неравенство запишем (- х² + х + 2)/( х³ + 1) ≥ 0
(х² - х - 2)/(х³ +1) ≤ 0
(х - 2)( х + 1)/(х³ + 1) ≤ 0
(х - 2)/(х² - х + 1) ≤ 0
х² - х + 1 всегда > 0,⇒х - 2 ≤ 0⇒ х ≤ 2 ( х ≠ -1)
ответ х∈ ( -∞ ; -1)∨(-1; 2]
наибольшее целое х = 2
2)Числитель (х - 3)(х + 10)(х + 9)(х - 1)
Знаменатель (х +9)( х - 1)
После сокращения получим неравенство: (х - 3)(х + 10)<0
-∞ + -10 - -9 - 1 - 3 + +∞
ответ х ∈(-10; -9)∨(-9; 1)∨(1; 3)
В прямоугольной системе координат ось X’X называется «осью абсцисс» .
При построении графиков функций, ось абсцисс обычно используется как область определения функции.
Ординатой (от лат. ordinatus - расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см. рис. 1). Если точка C принадлежит положительной полуоси OY, то ордината имеет положительное значение. Если точка C принадлежит отрицательной полуоси Y’O, то ордината имеет отрицательное значение. Если точка A лежит на оси X’X, то её ордината равна нулю.
В прямоугольной системе координат ось Y’Y называется «осью ординат» .
При построении графиков функций, ось ординат обычно используется как область значений функции.