На тригонометрической окружности есть значения π/6, π/2, π/4 и так далее.
Пусть π ≈ 3, тогда значение π/6 ≈ 3/6 = 0,5 Если также рассмотреть, например π/3 ≈ 1 То есть можно сказать что точка 0,3 чуть ниже точки π/6. Соответственно значение sin в этой точке будет больше 0, не меньше 1/2 (значение в точке π/6)
Далее рассмотрим также sin(1,1). π/3 ≈ 1 ⇒ точка 1,1 находит чуть-чуть выше точки π/3 Отсюда можно сказать, что sin(1.1) ≈ √3/2
sin(-1.2) = -sin(1.2) Найдём местоположение sin(1.2) π/2 ≈ 3/2 = 1.5 π/3 ≈ 3/3 = 1 То есть sin(1,2) находится между значениями π/3 и π/2. sin(1.2) > 0 Но так как у нас выражение -sin(1.2), то значение будет меньше 0.
Итого sin(-1.2) единственный меньше нуля, а значит меньше всех. sin(1.1) ≈ √3/2 sin(0.3) ≈ 1/2 или меньше 1/2 < √3/2 ⇒ sin(0.3) < sin(1.1)
Пусть π ≈ 3, тогда значение π/6 ≈ 3/6 = 0,5
Если также рассмотреть, например π/3 ≈ 1
То есть можно сказать что точка 0,3 чуть ниже точки π/6. Соответственно значение sin в этой точке будет больше 0, не меньше 1/2 (значение в точке π/6)
Далее рассмотрим также sin(1,1).
π/3 ≈ 1 ⇒ точка 1,1 находит чуть-чуть выше точки π/3
Отсюда можно сказать, что sin(1.1) ≈ √3/2
sin(-1.2) = -sin(1.2)
Найдём местоположение sin(1.2)
π/2 ≈ 3/2 = 1.5
π/3 ≈ 3/3 = 1
То есть sin(1,2) находится между значениями π/3 и π/2. sin(1.2) > 0
Но так как у нас выражение -sin(1.2), то значение будет меньше 0.
Итого sin(-1.2) единственный меньше нуля, а значит меньше всех.
sin(1.1) ≈ √3/2
sin(0.3) ≈ 1/2 или меньше
1/2 < √3/2 ⇒ sin(0.3) < sin(1.1)
ответ: sin(-1.2), sin(0.3), sin(1.1)
D/4 = 4 +2a
уравнение имеет корни, если D/4≥0 ⇒
4+2a≥0; 2a≥-4; a≥ -2
значит, при а>-2
x₁ = (-2+√4+2a)/a
x₂ = (-2- √4+2a)/a
при а= -2 √4+2a = 0 , ⇒ х=1
при а< - 2 корней нет
2) х²-8х = с² -8с
х² - 8х -(с²-8с) = 0
D/4 = 16+(c²-8c)
c²-8c+16 ≤ 0
c²-8c+16 = 0
D/4 = 16 -16 = 0
с≤4
при с = 4 уравнение имеет один корень х= 4
при с < 4 уравнение имеет корни
х₁ = 4-√16+(c²-8c) и х₂ = 4+√16+(c²-8c)
при с> 4 уравнение не имеет корней
3) х² -6а = а²+6х
х²-6х-(а²+6а) = 0
D/4 = 9+(а²+6а)
9+(а²+6а)≥0
a²+6a+9 ≥0
D/4 =9-9=0
a= -3
значит уравнение имеет единственный корень
при а = -3
х =3