Проведём через точку (1; 4) прямую, пересекающую оси Ох и Оу в положительных значениях. Координата точки пересечения с осью Ох равна х, а с осью Оу равна у.
Длину по у можно выразить через х по пропорции:
4/(х - 1) = у/х, отсюда у = 4х/(х - 1).
Сумма длин х + у = х + (4х/(х - 1)) = (х² - х + 4х)/(х - 1) = (х² + 3х)/(х - 1).
Производная этой функции равна y' = (x² - 2x - 3)/(x - 1)².
Для нахождения минимума приравняем её нулю (достаточно числитель): x² - 2x - 3 = 0. Д = 4 + 4*3 = 16. х = (2+-4)/2 = 3 и -1 (отрицательное значение не принимаем).
Определим знаки производной (по числителю - знаменатель положителен) левее и правее найденной критической точки.
х = 2 3 4
y' = -3 0 5 Переход от + к - это минимум.
Находим уравнение прямой через 2 точки: (1; 4) и (3; 0)
(х - 1)/2 = (у - 4)/-4. Сократим знаменатели на 2.
(х - 1)/1 = (у - 4)/-2. это каноническое уравнение прямой.
Проведём через точку (1; 4) прямую, пересекающую оси Ох и Оу в положительных значениях. Координата точки пересечения с осью Ох равна х, а с осью Оу равна у.
Длину по у можно выразить через х по пропорции:
4/(х - 1) = у/х, отсюда у = 4х/(х - 1).
Сумма длин х + у = х + (4х/(х - 1)) = (х² - х + 4х)/(х - 1) = (х² + 3х)/(х - 1).
Производная этой функции равна y' = (x² - 2x - 3)/(x - 1)².
Для нахождения минимума приравняем её нулю (достаточно числитель): x² - 2x - 3 = 0. Д = 4 + 4*3 = 16. х = (2+-4)/2 = 3 и -1 (отрицательное значение не принимаем).
Определим знаки производной (по числителю - знаменатель положителен) левее и правее найденной критической точки.
х = 2 3 4
y' = -3 0 5 Переход от + к - это минимум.
Находим уравнение прямой через 2 точки: (1; 4) и (3; 0)
(х - 1)/2 = (у - 4)/-4. Сократим знаменатели на 2.
(х - 1)/1 = (у - 4)/-2. это каноническое уравнение прямой.
-2х + 2 = у - 4.
у + 2х - 6 = 0 это общее уравнение прямой,
у = -2х + 6 оно же с угловым коэффициентом.
Дана функция f(x) = (-1/3)x³ (1/2)x² + 2х - 6.
Находим производную y'(x) = -x² - x + 2.
Определяем критические точки, приравняв производную нулю.
-x² - x + 2 = 0 или x² + x - 2 = 0.
Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Получили 3 промежутка монотонности функции:
(-∞; -2), (-2; 1) и (1; +∞).
Находим знаки производной y' = -x² - x + 2 на этих промежутках
х = -3 -2 0 1 2
y' = -4 0 2 0 -4.
Там, где производная отрицательна - там функция убывает.
Это промежутки (-∞; -2) и (1; +∞).