В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Сергій098765
Сергій098765
24.09.2022 19:13 •  Алгебра

Доведіть, що 2х^2 – 6ху + 9у^2 – 6х +9 \geq 0 при усіх дійсних значеннях х і у.

Показать ответ
Ответ:
babakhanyansona
babakhanyansona
17.09.2020 12:23

Доказательство:

2х^2 – 6ху + 9у^2 – 6х +9 = (х^2 – 6ху + 9у^2) + (х^2 – 6х +9) = (х - 3у)^2 + (х - 3)^2 ;

Так как (х - 3у)^2 ≥ 0 и (х - 3)^2 ≥ 0 для любых действительных х и у, то и вся сумма (х - 3у)^2 + (х - 3)^2 ≥ 0 при всех действительных значениях х и у.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота