1.Пусть скорость первого Х. Второго Х-20. 240/(Х-20)-240/Х=1 240*(Х-Х+20) =Х*Х-20Х Х*Х-20Х=4800 Х*Х-20Х+100=4900 (Х-10)*(Х-10)=70*70 Положительный Х один и равен 80 ответ : 80 км/ч
2) Средняя линия трапеции (9+15)/2=12 Средние линии двух треугольников образуемых верхним основанием и двумя нижними вершинами одинаковы и равны половине верхнего(меньшего) основания, т.е равны 4,5. Искомый отрезок, очевидно, равен средней линии трапеции минус длины средних линий этих треугольников, т.е. равен 12-2*4,5=3 ответ: 3
240/(Х-20)-240/Х=1
240*(Х-Х+20) =Х*Х-20Х
Х*Х-20Х=4800
Х*Х-20Х+100=4900
(Х-10)*(Х-10)=70*70
Положительный Х один и равен 80
ответ : 80 км/ч
2) Средняя линия трапеции (9+15)/2=12
Средние линии двух треугольников образуемых верхним основанием и двумя нижними вершинами одинаковы и равны половине верхнего(меньшего) основания, т.е равны 4,5.
Искомый отрезок, очевидно, равен средней линии трапеции минус длины средних линий этих треугольников, т.е. равен 12-2*4,5=3
ответ: 3
9x2 + 3x; б) 6xy +3x2y – 12xy2
2°. Разложите на множители:
а) y(у – 1) + 2(y – 1); б) x2 – 64.
3°. Сократите дробь (x^2+ 3x)/(3a+ax).
4°. У выражение (а – b)2 – (а – b)(а + b).
5°. Решите уравнение x2 + 7x = 0.
6 У выражение: с(с – 2)(с + 2) – (с – 1)(с2 + с + 1).
7 Найдите корни уравнения 3x3 – 27x = 0.
8 Разложите на множители многочлен 2х + 2у – х2 – 2ху – у2.
2 вариант.
1°. Вынесите общий множитель за скобки:
а) 2ab – ab2; б) 5a4 – 10a3 + 10a2
2°. Разложите на множители:
а) ax – ay + 2x – 2y; б) 9a2 – 16b2.
3°. Сократите дробь (2a+4)/(a^(2 )- 4).
4°. У выражение (x – 1) (x + 1) – x(x – 3).
5°. Решите уравнение x2 – 25 = 0.
6 У выражение: (х + 1)(х2 + х + 1)
Объяснение: