Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
Задание №1. 1.(-1,5+4-2,5)(-6) -1.5+4=2.5 2.5-2.5=0 В первой скобке будет 0. 0 нельзя умножать на другое число, следовательно ответ:0
2. =0,2 0,25 Скобка первая: (0,2-0,25)=-0,05 Решим вторую скобку: -1,6-3,3=-4,9 -4,9+5=0,1 Делим первую на вторую: -0,05:0,1=-0,5 ответ: -0,5
Задание №2.
1. 2(х-1)=3(2х-1) Первая скобка: умножаем 2 на каждый множитель и получается: 2х-2= Тоже самое и со второй скобкой: 6х-1 Получается: 2х-2=6х-1 Все числа с "х" переносим в правую сторону, а обычные числа в левую. Получается: 2х-6х=2-1(Главное помнить,что при переносе числа через знак "равно" знак числа меняется на противоположный.) Решаем уравнение: 2х-6х=2-1 -4х=1 х= х=-0,25 ответ: -0,25
2. 3-5(х-1)=х-2 Раскрываем скобки: 3-5х+1=х-2 "х" переносим в права, а обычные числа в лево: -5х-х=-3-1-2 -6х=-6 х=6 ответ: 6
4. приравняем обе части к общему знаменателю( у 3 и 2 это 6): с "х" перенесем в права, обычные числа в лево:
1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)
1.(-1,5+4-2,5)(-6)
-1.5+4=2.5
2.5-2.5=0
В первой скобке будет 0.
0 нельзя умножать на другое число, следовательно
ответ:0
2.
=0,2
0,25
Скобка первая: (0,2-0,25)=-0,05
Решим вторую скобку: -1,6-3,3=-4,9
-4,9+5=0,1
Делим первую на вторую: -0,05:0,1=-0,5
ответ: -0,5
Задание №2.
1. 2(х-1)=3(2х-1)
Первая скобка: умножаем 2 на каждый множитель и получается: 2х-2=
Тоже самое и со второй скобкой: 6х-1
Получается: 2х-2=6х-1
Все числа с "х" переносим в правую сторону, а обычные числа в левую. Получается:
2х-6х=2-1(Главное помнить,что при переносе числа через знак "равно" знак числа меняется на противоположный.)
Решаем уравнение:
2х-6х=2-1
-4х=1
х=
х=-0,25
ответ: -0,25
2. 3-5(х-1)=х-2
Раскрываем скобки: 3-5х+1=х-2
"х" переносим в права, а обычные числа в лево:
-5х-х=-3-1-2
-6х=-6
х=6
ответ: 6
4.
приравняем обе части к общему знаменателю( у 3 и 2 это 6):
с "х" перенесем в права, обычные числа в лево:
умножим крест - на - крест. получим:
0,5*6=-х*1
3=-х
х=-3
ответ: -3