. доведіть, що вираз х²+ 8ҳ+ 17 набуває лише додатні значень при всіх значеннях змінної х. якого найменшо. значення набуває цей вираз і при якому значенні х?
Докажем, сначала, что куб числа - монотонная функция. Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции. Пойдем методом от противного пусть в точках х и х+с функция принимает одно и то же значение, тогда: x^3=(x+c)^3 x^3=x^3+3x^2c+3xc^2+c^3 3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0 3x^2+3cx+c^2=0 D=9c^2-4*3c^2=-3c^2<0 Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна. Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей. Пусть: (x+1)^3>x^3 x^3+3x^2+3x+1>x^3 3x^2+3x+1>0 D=9-12=-3<0 Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0 Отсюда следует, что: (x+1)^3>x^3 f(x+1)>f(x) Значит функция является монотонно возрастающей.
Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции.
Пойдем методом от противного
пусть в точках х и х+с функция принимает одно и то же значение, тогда:
x^3=(x+c)^3
x^3=x^3+3x^2c+3xc^2+c^3
3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0
3x^2+3cx+c^2=0
D=9c^2-4*3c^2=-3c^2<0
Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна.
Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей.
Пусть:
(x+1)^3>x^3
x^3+3x^2+3x+1>x^3
3x^2+3x+1>0
D=9-12=-3<0
Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0
Отсюда следует, что:
(x+1)^3>x^3
f(x+1)>f(x)
Значит функция является монотонно возрастающей.
Четырёхзначное число ABCD нужно записать как сумму его слагаемых: 1000*A + 100*B + 10*C + D
A*B*C*D = 24
Возможные комбинации цифр: 8,3,1,1 — 6,4,1,1 — 6,2,2,1 — 4,3,2,1. — 3,2,2,2
1000*A+100*B+10*C+D должно делиться без остатка на 18. Значит, последняя цифра не может быть 3 или 1.
Итак, возможные варианты:
1138, 1318, 3118 — 1146, 1164, 1416, 1614, 4116, 6114 — 1226, 1262, 1622, 2126, 2162, 2216, 2612, 6122, 6212 — 1234, 1324, 1342, 1432, 2134, 2314, 3124, 3214, 4132 — 2232,2322,3222
Начинаем проверку всех чисел на кратность 18
Получаем, что только 2232, 2322 и 3222 кратны 18. Берите любое из них