Эти линейные функции вида у=kx+b, где k-это угловой коэффициент, с его изменением будет меняться угол наклона прямой к оси Ох, значит, функции с одинаковыми угловыми коэффициентами будут параллельны друг другу. Отсюда параллельные функции:
у=2х+1 и у=2х-3. Эти графики функций можно построить по двум точкам каждый. Находим точки:
у=2х+1
х=0
у=2*0+1=0+1=1
(0;1)
х=1
у=2*1+1=3
(1;3)
у=2х-3
х=0
у=2*0-3
у=-3
(0;-3)
х=1
у=2*1-3=-1
(1;-1)
у=х+7
х=0
у=7
(0;7)
х=2
у=2+7=9
(2;9)
По этим точкам строим графики.
2)
Поскольку графики прямые, два из которых параллельны, то эти 2 графика будут пересекать третий, т.е. у=2х+1 и у=2х-3 будут пересекать график у=х+3, а график у=х+7 пересекать его не будет, т.к. он с тем же угловым коэффициентом.
Для нахождения координат пересечения приравняем функции:
A1) Тангенс угла наклона касательной к графику функции f(x)=5x^2+3x-1 в точке с абсциссой x0=0,2 равен производной функции в заданной точке. f(x) = 5x²+3x-1, f'(x) = 10x+3, f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1. Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32). Производная функции равна f'(x) = 2х³-1. Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4. 8х³-4 = -3, 8х³ = 1, х = ∛(1/8) = 1/2 это абсцисса точки касания..
1)
у=2х+1
у=2х-3
у=х+7
Эти линейные функции вида у=kx+b, где k-это угловой коэффициент, с его изменением будет меняться угол наклона прямой к оси Ох, значит, функции с одинаковыми угловыми коэффициентами будут параллельны друг другу. Отсюда параллельные функции:
у=2х+1 и у=2х-3. Эти графики функций можно построить по двум точкам каждый. Находим точки:
у=2х+1
х=0
у=2*0+1=0+1=1
(0;1)
х=1
у=2*1+1=3
(1;3)
у=2х-3
х=0
у=2*0-3
у=-3
(0;-3)
х=1
у=2*1-3=-1
(1;-1)
у=х+7
х=0
у=7
(0;7)
х=2
у=2+7=9
(2;9)
По этим точкам строим графики.
2)
Поскольку графики прямые, два из которых параллельны, то эти 2 графика будут пересекать третий, т.е. у=2х+1 и у=2х-3 будут пересекать график у=х+3, а график у=х+7 пересекать его не будет, т.к. он с тем же угловым коэффициентом.
Для нахождения координат пересечения приравняем функции:
2х+1=х+3
2х-х=3-1
х=2
у=2+3=5
координата пересечения (2;5)
2х-3=х+3
2х-х=3+3
х=6
у=6+3=9
(6;9)
Объяснение:
f(x) = 5x²+3x-1,
f'(x) = 10x+3,
f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1.
Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32).Производная функции равна f'(x) = 2х³-1.
Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4.
8х³-4 = -3,
8х³ = 1,
х = ∛(1/8) = 1/2 это абсцисса точки касания..