а³-25а = 0 а²-4а+5 Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0: а³-25а=0, а²-4а+5≠0 решаем уравнение: а³-25а=0, а(а²-25)=0 , произведение множителе равно нулю тогда и только тогда , когда хотя бы один из множителей равен 0: а=0 или а²-25=0 а²=25, а=5, а=-5 Проверка: найденные значения подставляем во второе условие. а=0, 0²-4·0+5=5≠0-явл. корнем а=5, 5²-4·5+5=25-20+5=10≠0-явл. корнем а=-5, (-5)²-4·(-5)+5=25+20+5=50≠0-явл. корнем ответ:дробь равна 0 при а=0,а=5,а=-5
Известно, что велосипедисты встретились через час и продолжили движение. Можно написать через формулу: Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи
а²-4а+5
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0:
а³-25а=0,
а²-4а+5≠0
решаем уравнение: а³-25а=0, а(а²-25)=0 , произведение множителе равно нулю тогда и только тогда , когда хотя бы один из множителей равен 0:
а=0 или а²-25=0
а²=25, а=5, а=-5
Проверка:
найденные значения подставляем во второе условие.
а=0, 0²-4·0+5=5≠0-явл. корнем
а=5, 5²-4·5+5=25-20+5=10≠0-явл. корнем
а=-5, (-5)²-4·(-5)+5=25+20+5=50≠0-явл. корнем
ответ:дробь равна 0 при а=0,а=5,а=-5
Можно написать через формулу:
Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда
час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено
часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи
ответ 5 часов