Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
( x + 2)²( (x + 2)² - 4) = 5
( x + 2)²( x² + 4x + 4 - 4) = 5
( x + 2)²( x² + 4x) = 5
(x² + 4x)(x² + 4x + 4) = 5
x⁴ + 4x³ + 4x² + 4x³ + 16x² + 16x - 5 = 0
x⁴ + 8x³ + 20x² +16x- 5 =0
Разложим на множители и решим:
(x² + 4x - 1)(x² + 4x + 5) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² + 4x - 1 = 0
D = b² - 4ac = 16 - 4×(-1) = 20
x1 = ( - 4 + 2√5) / 2 = - 2(2 - √5)/2 = - (2 - √5) = √5 - 2
x2 = ( - 4 - 2√5)/2 = - 2( 2 + √5) / 2 = - ( 2 + √5) = - √5 - 2
x² + 4x + 5 = 0
D = b² - 4ac = 16 - 4×5 = - 4 - дискриминант отрицательный,значит,корней нет.
ответ: x1 = √5 - 2, x2 = - √5 - 2.