1) чтобы узнать проходит ли график функции через обозначенные точки, необходимо для начала указанные координаты подставить в уравнение. как? например 1я точка А (3;0). 3 - это х, 0 - это у. проверяем: 0 = -2*3 + 3 0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил. 2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у. то есть 1) 2х - 6у = 10 2*0 - 6у = 10 -6у = 10 у = - 1 целая 2/3 точка пересечения с осью ох (0; -1 целая 2/3) затем ищем точку пересечения с осью оу: 2х -6*0 = 10 2х = 10 х = 5 (5;0)
1) Не совсем понятно cosx умножается на всю дробь или только на икс. В первом случае будет ноль, т.к. синус и косинус функции периодические, их произведение изменяется не более, чем от плюс до минус единицы. А Всё делится на бесконечность. Второй случай сложнее, периодически встречаются бесконечные разрывы, тогда предел будет плюс или минус бесконечность.
2) Сделаем замену t=5/x, тогда t→0 и x=5/t
Использован второй замечательный предел:
3) Сделаем замену t=2/x, тогда t→0 и x=2/t
4) Сделаем замену t=2/(3x), тогда t→0 и x=2/(3t)
Т.о. везде делаются преобразования, чтобы использовать второй замечательный предел.
0 = -2*3 + 3
0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил.
2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у.
то есть 1) 2х - 6у = 10
2*0 - 6у = 10
-6у = 10
у = - 1 целая 2/3
точка пересечения с осью ох (0; -1 целая 2/3)
затем ищем точку пересечения с осью оу:
2х -6*0 = 10
2х = 10
х = 5
(5;0)
В первом случае будет ноль, т.к. синус и косинус функции периодические, их произведение изменяется не более, чем от плюс до минус единицы. А Всё делится на бесконечность. Второй случай сложнее, периодически встречаются бесконечные разрывы, тогда предел будет плюс или минус бесконечность.
2)
Сделаем замену t=5/x, тогда t→0 и x=5/t
Использован второй замечательный предел:
3)
Сделаем замену t=2/x, тогда t→0 и x=2/t
4)
Сделаем замену t=2/(3x), тогда t→0 и x=2/(3t)
Т.о. везде делаются преобразования, чтобы использовать второй замечательный предел.