График заданной функции с модулем имеет вид параболы, у которой часть графика ниже оси х зеркально перенесена в положительные значения. Граничные точки находим из уравнения x²−6x+8 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4; x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2. То есть в точках х =2 и х =4 происходит перелом параболы. График и таблица координат точек для построения графика приведены в приложении.
Граничные точки находим из уравнения x²−6x+8 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4;
x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2.
То есть в точках х =2 и х =4 происходит перелом параболы.
График и таблица координат точек для построения графика приведены в приложении.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а;2√5). Найдите значение а.
Нужно в уравнение подставить известные значения (координаты точки А):
2√5 = √а
(2√5)² = (√а)²
4*5 = а
а=20;
b) Если х∈[0;4], то какие значения будет принимать данная функция?
у=
√х
у=√0=0;
у=√4=2;
При х∈ [0;4] у∈ [0; 2].
с) y∈ [13;31]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
31 = √х
(31)² = (√х)²
х=961;
х∈ [169; 961]
d) Найдите при каких х выполняется неравенство у≤3.
√х <= 3
(√х)² <= (3)²
х <= 9
Неравенство у≤3 выполняется при х [0, 9].