11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).