1. Корень уравнения - это значение неизвестной, при подставлении которого достигается равенство.
6x=42 - 7 - корень (6*7=42)
0x=11 - 7 - не корень (0*7≠11)
(16-2*8)x=0 - 7 - корень (7(16-2*8)=0)
2. Решить уравнение - значит найти все его корни или убедиться, что их нет.
6x=-12
x=-12/6
x=-2
ответ: -2
x-2x*6=0
x-12x=0
x=12x - корней нет
ответ: корней нет
5x-4x=6+x
x=6+x - корней нет
ответ: корней нет
3. Равносильные уравнения - это уравнения, все корни которых совпадают.
Свойства уравнений: 1. Если к обеим частям уравнения прибавить или вычесть одно и то же число, то получится уравнение, равносильное данному. 2. Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив знак, то получится уравнение, равносильное данному. 3. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
5x-1=3 ≡ 5x-4=0
0,2x=1,1 ≡ x=5,5
3x-4x+6=0 ≡ 3x-4x=0-6
4. Линейное уравнение с одной переменной - это уравнение вида ax=b, где x - переменная, а a и b - некоторые числа.
Примеры: 4x=16, 7x=0
5. Если a≠0, то у уравнения ax=b единственный корень (5x=35), если a=0 и b=0 - бесконечно много корней (0x=0), а если a=0 и b≠0 - нет корней (0x=128).
1. Корень уравнения - это значение неизвестной, при подставлении которого достигается равенство.
6x=42 - 7 - корень (6*7=42)
0x=11 - 7 - не корень (0*7≠11)
(16-2*8)x=0 - 7 - корень (7(16-2*8)=0)
2. Решить уравнение - значит найти все его корни или убедиться, что их нет.
6x=-12
x=-12/6
x=-2
ответ: -2
x-2x*6=0
x-12x=0
x=12x - корней нет
ответ: корней нет
5x-4x=6+x
x=6+x - корней нет
ответ: корней нет
3. Равносильные уравнения - это уравнения, все корни которых совпадают.
Свойства уравнений: 1. Если к обеим частям уравнения прибавить или вычесть одно и то же число, то получится уравнение, равносильное данному. 2. Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив знак, то получится уравнение, равносильное данному. 3. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
5x-1=3 ≡ 5x-4=0
0,2x=1,1 ≡ x=5,5
3x-4x+6=0 ≡ 3x-4x=0-6
4. Линейное уравнение с одной переменной - это уравнение вида ax=b, где x - переменная, а a и b - некоторые числа.
Примеры: 4x=16, 7x=0
5. Если a≠0, то у уравнения ax=b единственный корень (5x=35), если a=0 и b=0 - бесконечно много корней (0x=0), а если a=0 и b≠0 - нет корней (0x=128).
y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение: