Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. В январе 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 1,9 млн золотых, а процент, который дракон согласился отдавать, был равен 7% в год от суммы оценки, срок договора определили немалый — 53 лет (год). Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца. Смогут ли мастера купить досок в июле 20952 года на сумму 61 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)
Задание № 5:
Стоя неподвижно на ступени эскалатора в метро Ваня поднимается наверх за одну минуту. Взбегая по ступеням неподвижного эскалатора, он добирается до верха за 40 секунд. За какое время Ваня поднимается наверх, если начинает взбегать по ступеням эскалатора, движущегося вниз? Дайте ответ в секундах.
РЕШЕНИЕ: Пусть длина расстояния L.
Если Ваня взбегает по ступеням неподвижного эскалатора, то скорость движения равна L/40. (Считаем в секундах, в минуте 60 секунд).
Если Ваня стоит неподвижно на ступени эскалатора, то скорость движения равна L/60.
Когда Ваня бежит по ступеням движущегося вниз эскалатора, то скорости Вани и эскалатора вычитаются: L/40-L/60. Тогда время определяется отношением длины к скорости:
ОТВЕТ: 120 секунд
Задание № 5:
Стоя неподвижно на ступени эскалатора в метро Ваня поднимается наверх за одну минуту. Взбегая по ступеням неподвижного эскалатора, он добирается до верха за 40 секунд. За какое время Ваня поднимается наверх, если начинает взбегать по ступеням эскалатора, движущегося вниз? Дайте ответ в секундах.
РЕШЕНИЕ: Пусть длина расстояния L.
Если Ваня взбегает по ступеням неподвижного эскалатора, то скорость движения равна L/40. (Считаем в секундах, в минуте 60 секунд).
Если Ваня стоит неподвижно на ступени эскалатора, то скорость движения равна L/60.
Когда Ваня бежит по ступеням движущегося вниз эскалатора, то скорости Вани и эскалатора вычитаются: L/40-L/60. Тогда время определяется отношением длины к скорости:
ОТВЕТ: 120 секунд