Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. 1 января 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 1,1 млн золотых, а процент, который дракон согласился отдавать, был равен 6% в год от суммы оценки, срок договора определили немалый — 53 лет (год). Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца. Смогут ли мастера купить досок в июле 20952 года на сумму 64 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)
y = f(x)
f'(x) = (x^2 + 10x + 25)' * (2x - 10) + (x^2 + 10x + 25) * (2x - 10)' + 9' =
= (2x + 10 + 0) * (2 - 0) + (x^2 + 10x + 25) * (2 - 0) + 0 =
= 2*(2x+10) + 2(x+5)^2 = 4(x+5) + 2(x+5)^2 = 2(x+5)(2 + x + 5) =
= 2(x+5)(7+x) - производная нашей функции, приравниваем её к нулю:
2(x+5)(7+x) = 0
x+5 = 0 и 7+x = 0
x = -5 x = -7
Отмечаем полученные корни на координантной прямой:
+ - + x
оо>
-7 -5
Точка максимума - это x=-7, так как производная f'(x) возрастает до -7, а потом убывает. Точка x=-5 - точка минимума.
y=(-7+5)^2(-7-5) + 9 = 4*(-12) + 9 = -48 + 9 = -39
Получается, что в точке (-5;-39) эта функция достигает своего максимума.
Объяснение:
Уравнение касательной имеет вид:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
Дана функция:
f(x)=-x^2-4x+2f(x)=−x
2
−4x+2
Найдём значение функции в точке x₀:
f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x
0
)=f(−1)=−(−1)
2
−4⋅(−1)+2=−1+4+2=5
Найдём производную функции:
f'(x)=-2x^{2-1}-4=-2x-4f
′
(x)=−2x
2−1
−4=−2x−4
Найдём производную функции в точке x₀:
f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f
′
(x
0
)=f
′
(−1)=−2⋅(−1)−4=2−4=−2
Подставим найденные значения, чтобы найти уравнение касательной:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))
y=5-2(x+1)y=5−2(x+1)
y=5-2x-2y=5−2x−2
\boxed{y=-2x+3}
y=−2x+3
ответ: y=-2x+3 - искомое уравнение.