Дуже один розчин містить 30% (за об'ємом), а другий – 55% азотної кислоти. скільки літрів кожного розчину потрібно злити, щоб одержати 100л 50%-го розчину азотної кислоти? ? бажано детально. буду дуже вдячна
ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
3) Подставляя x1=1 в первое уравнение исходной системы, получаем уравнение 4-7*y+7*y²=4, или y²-y=0. Отсюда y1=0, y2=1 и мы находим первые две пары решений системы: (1,0) и (1,1)
4) Подставляя теперь x2=-1 в первое уравнение системы, получаем уравнение 4+7*y+7*y²=4, или y²+y=0. Отсюда y3=0, y4=-1 и мы находим другие две пары решений системы: (-1,0) и (-1,-1).
5) Из всех 4-х пар решений наибольшую сумму имеет вторая. Обозначая x0=1 и y0=1, находим x0+y0=2.
ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
ответ: (b - c)(a - 4).
8*x²-14*x*y+14*y²=8
21*x²+14*x*y-14*y²=21
2) Складывая полученные уравнения, приходим к уравнению 29*x²=29. Отсюда x²=1,x1=1, x2=-1.
3) Подставляя x1=1 в первое уравнение исходной системы, получаем уравнение 4-7*y+7*y²=4, или y²-y=0. Отсюда y1=0, y2=1 и мы находим первые две пары решений системы: (1,0) и (1,1)
4) Подставляя теперь x2=-1 в первое уравнение системы, получаем уравнение 4+7*y+7*y²=4, или y²+y=0. Отсюда y3=0, y4=-1 и мы находим другие две пары решений системы: (-1,0) и (-1,-1).
5) Из всех 4-х пар решений наибольшую сумму имеет вторая. Обозначая x0=1 и y0=1, находим x0+y0=2.
ответ: 2