Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы. Спустя один час, когда одному из них оставалось 2 км до окончания первого круга, ему сообщили, что второй бегун первый круг 4 минуты назад. Найдите скорость второго бегуна, если известно, что она на 3 км/ч больше скорости первого. ответ дайте в км/ч. можно без решения
б) (b₁ + b₂ + b₃)/3 = 14/3, ⇒b₁ + b₂ + b₃ = 14, ⇒b₁ + b₁q + b₁q² = 14,⇒
⇒b₁ + b₁q² = 10
Получили систему двух уравнений с 2-мя переменными:
b₁q = 4
b₁ + b₁q² = 10
решаем:
b₁ + b₁q*q = 10, ⇒ b₁ + 4q = 10, ⇒b₁ = 10 - 4q
Это наша подстановка.
подставим в 1-е уравнение.
b₁q = 4, ⇒ (10 - 4q)*q = 4, ⇒ 10q -4q² = 4, ⇒ 4q² -10q +4 = 0,⇒
⇒ 2q² -5q +2 = 0. Решаем D = 25 -16 = 9
q = (5 +-3)/4
q₁= 2, q₁= 1/2
а) q₁= 2, ⇒b₁ = 10 - 4q = 10 - 8 = 2, S₅ = b₁(q⁵-1)/(q -1) = 2*31+1 = 62
б) q₂ = 1/2, ⇒b₁ = 10 -4q = 10 - 4*1/2 = 8, S₅ = 8(1/32 - 1)/(-1/2) = 15,5
4) Если у двух равных дробей равны знаменатели, значит у них равны и числители: x^2=16; x=+-V16; x1=4; x2=-4/
1) При решении дробных уравнений обычно от дробей избавляются. Для этого находят общий знаменатель, дополнительные множители, и умножают числители на дополнительные множители, отбросив при этом знаменатель.
x^2/(x-1)=(2-x)/(x-1); x^2=2-x; x^2+x-2=0; решаем через дискриминант, получим x1=1; x2=-2.
2) (4y+3)/(y-7)=-x^2/(y-7); 4y+3=-x^2; x^2+4y+3=0; y1=3; y2=1.
3) Общий знаменатель: (х+10)(х-8). Решение: x*(x-8)=1*(х+10); x^2-8x=x+10; x^2-9x-10=0; x1=10; x2=-1.
4) Общий знаменатель: (3x-1)(27-x). Решение: 1*(27-х) =x*(3x-1); 27-x=3x^2-x; 3x^2=27; x^2=27/3; x^2=9; x=+-V9; x1=3; x2=-3.