В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
КамиллаОк
КамиллаОк
27.04.2021 15:42 •  Алгебра

Два мастера оклеили обоями квартиры на этаже в новом доме за 15 дней, причём второй мастер присоединился к первому через 7 дней после начала работы. известно, что первому мастеру на выполнение всей работы потребовалось на 7 дней меньше, чем второму. за сколько дней мог бы выполнить эту работу каждый мастер, работая отдельно?

Показать ответ
Ответ:
almas05
almas05
07.07.2020 08:20
Пусть первому мастеру нужно было Х дней, чтобы выполнить работу в одиночестве. Тогда второму на одиночную работу потребовалось бы Х+7 дней. Первый мастер каждый день выполнял 1/Х долю работы, второй 1/(Х+7). Первый мастер работал 15 дней и выполнил 15/Х долей работы; остаток работы выполнил второй мастер, который работал (15-7)/(Х+7). Полная работа, как легко можно понять, состоит из целой единицы - так, например, первый мастер работал бы Х дней и выполнял бы 1/Х долю работы за каждый, Х*(1/Х)=1. Отсюда уравнение:
\frac{15}{x}+ \frac{8}{x+7}=1 || *x(x+7)\\ 15x+105+8x=x^2+7x\\-x^2+16x+105=0\\x^2-16x-105=0\\x_1=21; x_2=-5
Корни найдены по теореме Виета, и очевидно, что отрицательный противоречит смыслу задачи. Следовательно, Х=21, а Х+7=28.
ответ. Первый мастер выполнил бы работу за 21 день, второй - за 28.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота