Два мотоцикла одновременно вышли из точек A и B друг против друга. Их расстояние составляет 600 км. Первый мотоциклист проезжает 250 км, второй - 200 км. Первый мотоциклист подъезжает к точке B за 3 часа до того, как второй подъезжает к точке A. Предположим, что они движутся плавно, и узнаем скорость мотоциклистов.
Всего все возможных событий:
Искомая вероятность:
Вероятность того, что первый вынутый шар является черным равна 3/9 = 1/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется черным равна 2/8 = 1/4. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся черными равна 1/4*1/3=1/12
Вероятность того, что первый вынутый шар является белым равна 6/9 = 2/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется белым равна 5/8. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся белыми равна 2/3*5/8=10/24=5/12
Тогда искомая вероятность по теореме сложения: P = 1/12 + 5/12 = 6/12 = 1/2
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.