Два наборщика текстов выполняют заказы с постоянной скоростью. оказалось, что более быстрый из них набирает 3 страницы текста на 5 минут быстрее, а за 20 минут набирает на 3 страницы больше, чем медленный. найдите произведение скоростей печати наборщиков текста, выраженных в страницах в час.
1 сплав: 60x; 15x; 25x это я указываю количество каждого вещества.
2 сплав: 0y; 30y; 70y
3 сплав: 45z; 0z; 55z
Общий сплав: 100(x+y+z), меди в нем 15x+30y; по условию медь составляет 20%, то есть одну пятую часть сплава:
15x+30y=20(x+y+z); 3x+6y=4x+4y+4z; x=2y-4z.
Поскольку y>0, можно считать, что y=1; x=2-4z.
Естественные ограничения дают такие условия:
x∈[0;2]; z∈[0;1/2]
Нас спрашивают про содержание алюминия, то есть про возможные значения
(60x+45z)/(100x+100y+100z)=(12x+9z)/20x+20y+20z)=║подставляем y=1; x=2-4z║=(24-48z+9z)/40-80z+20+20z)=
(24 -39z)/(60-60z)=(8-13z)/(20(1-z))=
(13(1-z)-5)/(20(1-z))=13/20+1/(4(z-1)); z∈[0;1/2]
Получившаяся функция на этом промежутке убывает⇒ наибольшее значение принимает в левом конце, наименьшее в правом.
Подставив z=0, получаем 13/20-1/4=8/20=2/5, то есть 40%
Подставив z=1/2, получаем 13/20 - 1/2=3/20, то есть 15%
ответ: процентное содержание алюминия от 15% до 40%
Решение. Пусть x (км/ч) - собственная скорость теплохода, т.е. скорость теплохода в неподвижной воде. Тогда когда теплоход плывет по течению, то его скорость v1=(x+2)
Пусть S(км) - искомое растояние между пристанями.
Из условия получим: S=v1*t1=4(x+2)(1)
где t1=4 ч - по условию
Когда же теплоход движется против течения, то его скорость v2=(x-2)
Из условия получим: S=v2*t2=5(x-2)(2)
где t2=5 ч - по условию
Левые части равенств (1) и (2) равны, поэтому равны их правые части: 4(x+2)=5(x-2), раскроем скобки, приведем подобные: 5x-4x=8+10 => x=18 км/ч (3)
Теперь мы можем найти S. Что мы можем сделать как по формуле (1), так по формуле (2).
Из (2) и (3) имеем: S=5(18-2)=5*16=80 км