Два робітники можуть виконати 3/5 завдання за 4 дні, за скільки днів зможе виконати завдання кожен робітник, працюючи окремо, якщо половину завдання один з них може виконає на 5 днів швидше ніж перший
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
Пусть y = uv, тогда y' = u'v + uv':
Решим левый интеграл:
cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">
Возвращаемся к исходному:
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
3. Мы получили прямоугольный треугольник
По теореме Пифагора находим высоту, то есть:
а^2+в^2=с^2 (где а и в-катеты, а с-гипотенуза)
пусть в-Х,
а=1/2 основная, что равно 6,4
с-боковая сторона, что по условию равно 8
подставим числа
8^2=6,4^2+х^2
64=40,96+х^2
х^2=23,04
х=4,8