Два робітники, працюючи разом, можуть виконати деяке завдання за 60 год. За скільки годин може виконати всю роботу кожний з робітників, працюючи окремо, якщо перший з них може це зробити на 22 год швидше ніж другий?
Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...
См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
а ---скорость первого пешехода в км/час
b ---скорость второго пешехода в км/час
t ---время в пути до встречи (для обоих пешеходов оно одинаковое)))
тогда
до встречи первый часть пути =(a*t) км
до встречи второй часть пути =(b*t) км
после встречи первый оставшуюся ему часть пути за 4 часа
b * t / a = 4 отсюда: t = 4 * a / b
после встречи второй оставшуюся ему часть пути за 9 часов
a * t / b = 9
a*4*a / b² = 9
a / b = 3 / 2
t = 4*3/2 = 2*3 = 6
ответ: первый был в пути 4+6 = 10 часов
второй был в пути 9+6 = 15 часов
6 часов они шли до встречи...
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки (0;0) удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т. р=-1