Є два сплави олова 1 містить 15% олива, а другий 45%, скільки потрібно взяти кожного сплаву щоб одержати 20 кілограмів нового сплаву який містив би 42% олива в
Левую и правую часть можно сократить на x+1 (делим на это выражение при условии, что x≠-1), тогда остается Возводим обе части в квадрат, переносим 4 влево, получаем квадратное уравнение: По теореме Виета произведение корней равно 6, сумма равна -1. Корни: -3, 2.
Если в уравнении есть выражение под корнем, то чаще всего его нужно "уединять" (переносить все, кроме корня, за знак равенства) и потом возводить левую и правую части в квадрат, тогда этот корень пропадает.
В данном случае: То же самое, но здесь скорее повезло, что справа пропала переменная, могло быть и не так хорошо :)
Возводим обе части в квадрат, переносим 4 влево, получаем квадратное уравнение:
По теореме Виета произведение корней равно 6, сумма равна -1. Корни: -3, 2.
Если в уравнении есть выражение под корнем, то чаще всего его нужно "уединять" (переносить все, кроме корня, за знак равенства) и потом возводить левую и правую части в квадрат, тогда этот корень пропадает.
В данном случае:
То же самое, но здесь скорее повезло, что справа пропала переменная, могло быть и не так хорошо :)
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)