Два велосипедисти виїхали одночасно з двох сіл відстань між якими становить 9 км, і зустрілися через 0,5 год. Визначте швидкість руху кожного, якщо швидкість першого велосипедиста на 1,6 км/год більша
Желтых 4 ж. зеленых --- 6 ж. взято 3 ж. Р(1 др.) ? Решение. 1-ы й с п о с о б. 4 + 6 = 10 всего жетонов. Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30 Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6 События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов. Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые. Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2 Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых. Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8 ответ:0,8 2-о й с п о с о б. 4 + 6 = 10 всего жетонов. С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон. С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый 36 + 60 = 96 всего благоприятных дающих нужный результат). Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых . ответ:0,8
Y=(x²+3*x-4)/(x+1)
ИССЛЕДОВАНИЕ
1. Область определения. Деление на ноль в знаменателе.
Х≠ -1.Х∈(-∞;-1)∪(-1;+∞)
2. Вертикальная асимптота: Х= -1.
3. Пересечение с осью Х. Y(x) = x²+3*x-4) =(x-1)*(x+4)
x1 = -4, x2 = 1
4. Пересечение с осью У - Y(0) = - 4
5. Наклонная асимптота
k = lim(+∞)Y(x)/x = (x²+3*x-4)/(x²+x) = 4. Уравнение асимптоты: Y = x.
6. Проверка на чётность.Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x)
Функция ни четная ни нечетная.
7. Поведение в точке разрыва.
lim(->-1-) Y(x) = +∞. lim(->-1+) Y(x) = -∞. Точка перегиба.
8, Первая производная.
9. Корней производной - нет. Локальных экстремумов нет.
10. Участки монотонности функции.
Возрастает на всем интервале определения - Х∈(-∞;+∞).
11. Вторая производная.
Корней нет. Точек перегиба (на графике) - нет - разрыв.
12. Выпуклая - "горка" - Х∈(-1;-∞). Вогнутая - "ложка" - Х∈(-∞;-1)
13. График в приложении
зеленых --- 6 ж.
взято 3 ж.
Р(1 др.) ?
Решение.
1-ы й с п о с о б.
4 + 6 = 10 всего жетонов.
Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30
Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6
События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов.
Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые.
Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2
Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых.
Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8
ответ:0,8
2-о й с п о с о б.
4 + 6 = 10 всего жетонов.
С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти
С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон.
С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый
36 + 60 = 96 всего благоприятных дающих нужный результат).
Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых .
ответ:0,8