Две бригады, работая вместе, могут выполнить задание за 8 часов. Первая бригада, работая одна, может выполнить это задание на 12 ч быстрее, чем вторая бригада. Сколько часов потребуется каждой бригаде для выполнения задания при отдельной работе
2x=10 x=5 5 входит в ОДЗ ответ. х=5 3) ОДЗ: Система решается не очень легко, поэтому найдем корни и потом сделаем проверку Приравниваем аргументы: х²-4х-7=5-3х х²-х-12=0 D=(-1)-4·(-12)=49=7² x=(1-7)/2=-3 или х=(1+7)/2=4 Проверяем удовлетворяют ли найденные корни ОДЗ при х=-3
оба неравенства верные, х=3 - корень при х=4
оба неравенства неверные, х=4 - не является корнем уравнения ответ х=3 4) ОДЗ: система трех неравенств (x+2)>0 ⇒ x > -2 (х-3)>0 ⇒ x>3 (2x-1)>0 ⇒ x> 1/2 ответ системы х> 3
заменили сумму логарифмов логарифмом произведения. (х+2)(х-3)=(2х-1) х²-х-6=2х-1 х²-3х-5=0 D=(-3)²-4·(-5)=29 x=(3-√29)/2 <3 и не или х=(3+√29)/2>3 - принадлежит ОДЗ принадлежит ОДЗ ответ. (3+√29)/2
1) Наверное так: пусть один катет b, другой катет b·q, гипотенуза bq² Проверяем выполнение теоремы Пифагора (bq²)²=b²+(bq)² b²q⁴=b²+b²q² ⇒ q⁴=1+q² q⁴-q²-1=0 D=(-1)²+4=5 q²=(1+√5)/2 второе решение не подходит, так как (1-√5)/2<0
отрицательное q не удовлетворяет условию задачи ( стороны не могут быть отрицательными)
2) а) четвертый имеет четвертый номер. Счет начинается с первого, с 1. б)b₁ - первый член прогрессии, n-ый b₂- второй b₃ -третий .... - k-ый ((n-k)+1)-ый - (k+1)-ый (n-k)ый ...... - n-ый обратный счет вверх 1-ый
После того как слева отметили к-ый от начала член прогрессии, останется (n-k) членов прогрессии. Теперь смотрим на правый столбик и начинаем подниматься вверх. Когда дойдем до строчки, в которой слева написано k-ый член прогрессии, получается, что справа строчек вверх. Обозначим n-k+1=m ⇒ k=n-m+1 Поэтому если справа (снизу вверх) дойдем до элемента под номером m, то слева это элемент под номером (n-m+1) ответ. k-ый от конца имеет номер (n-k+1)
2x=10
x=5
5 входит в ОДЗ
ответ. х=5
3) ОДЗ:
Система решается не очень легко, поэтому найдем корни и потом сделаем проверку
Приравниваем аргументы:
х²-4х-7=5-3х
х²-х-12=0
D=(-1)-4·(-12)=49=7²
x=(1-7)/2=-3 или х=(1+7)/2=4
Проверяем удовлетворяют ли найденные корни ОДЗ
при х=-3
оба неравенства верные, х=3 - корень
при х=4
оба неравенства неверные, х=4 - не является корнем уравнения
ответ х=3
4) ОДЗ: система трех неравенств
(x+2)>0 ⇒ x > -2
(х-3)>0 ⇒ x>3
(2x-1)>0 ⇒ x> 1/2
ответ системы х> 3
заменили сумму логарифмов логарифмом произведения.
(х+2)(х-3)=(2х-1)
х²-х-6=2х-1
х²-3х-5=0
D=(-3)²-4·(-5)=29
x=(3-√29)/2 <3 и не или х=(3+√29)/2>3 - принадлежит ОДЗ
принадлежит ОДЗ
ответ. (3+√29)/2
пусть один катет b, другой катет b·q, гипотенуза bq²
Проверяем выполнение теоремы Пифагора
(bq²)²=b²+(bq)²
b²q⁴=b²+b²q² ⇒ q⁴=1+q²
q⁴-q²-1=0
D=(-1)²+4=5
q²=(1+√5)/2 второе решение не подходит, так как (1-√5)/2<0
отрицательное q не удовлетворяет условию задачи ( стороны не могут быть отрицательными)
2) а) четвертый имеет четвертый номер. Счет начинается с первого, с 1.
б)b₁ - первый член прогрессии, n-ый
b₂- второй
b₃ -третий
....
- k-ый ((n-k)+1)-ый
- (k+1)-ый (n-k)ый
......
- n-ый обратный счет вверх 1-ый
После того как слева отметили к-ый от начала член прогрессии, останется (n-k) членов прогрессии.
Теперь смотрим на правый столбик и начинаем подниматься вверх.
Когда дойдем до строчки, в которой слева написано k-ый член прогрессии, получается, что справа строчек вверх.
Обозначим
n-k+1=m ⇒ k=n-m+1
Поэтому если справа (снизу вверх) дойдем до элемента под номером m, то слева это элемент под номером (n-m+1)
ответ. k-ый от конца имеет номер (n-k+1)