В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Masha6996
Masha6996
01.03.2021 15:00 •  Алгебра

Две семьи отправились на детский утренник. Первая семья купила два детских билета и один взрослый и всего заплатила 495 рублей. Вторая семья купила три детских билета и два взрослых и всего заплатила 850 рублей. Сколько стоит один детский билет и сколько стоит один взрослый билет? Детский билет стоит
рублей,
а взрослый билет стоит
рублей.

Показать ответ
Ответ:
SobolevaAlina
SobolevaAlina
30.09.2020 02:12
№1
Применяем ограниченность синуса и косинуса
-1≤cosx≤1
Преобразуем правую часть по формуле
cos^2 \alpha = \frac{1+cos2 \alpha }{2}

\frac{1+8cos^2x}{4}= \frac{1+ 8\cdot \frac{1+cos2x}{2} }{4}= \frac{1+ 4\cdot (1+cos2x)}{4}= \frac{5+ 4\cdot cos2x}{4}

-1 \leq cos2x \leq 1 \\ \\ -4 \leq 4\cdot cos2x \leq 4 \\ \\ -4+5 \leq 5+4\cdot cos2x \leq 4+5 \\ \\1 \leq 5+4\cdot cos2x \leq 9 \\ \frac{1}{4} \leq \frac{5+ 4\cdot cos2x}{4} \leq \frac{9}{4}
ответ Множество значений
[ \frac{1}{4};2 \frac{1}{4}]

Применяем ограниченность синуса и косинуса
-1≤sinx≤1
Преобразуем правую часть по формуле
sin \alpha cos \alpha = \frac{sin2 \alpha }{2}

sin2xcos2x+2= \frac{sin4x}{2}+2 \\ \\ -1 \leq sin4x \leq 1 \\ \\ -\frac{1}{2} \leq \frac{sin4x}{2} \leq \frac{1}{2} \\ \\ -\frac{1}{2} +2\leq \frac{sin4x}{2}+2 \leq \frac{1}{2} +2\\ \\ 1 \frac{1}{2} \leq \frac{sin4x}{2}+2 \leq 2\frac{1}{2}

ответ Множество значений
[1 \frac{1}{2};2 \frac{1}{2}]

 №2 Найти область определения функции
у=1/(sinx-sin3x)
Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0
Найдем при каких х знаменатель равен 0. Решаем уравнение
sinx-sin3x=0
Применяем формулу
sin \alpha -sin \beta =2sin \frac{ \alpha - \beta }{2}\cdot cos \frac{ \alpha + \beta }{2}

2sin \frac{ x- 3x }{2}\cdot cos \frac{ x + 3x }{2}=0 \\ \\ 2sin(-x)\cdot cos 2x=0 \\ \\ \left[\begin{array}{ccc}sin(-x)=0\\cos2x=0\end{array}\right
Так как синус - нечетная функция, то
sin(-x)=-sinx 

sinx=0  ⇒    x=πk,  k∈Z
cos2x=0  ⇒    2x=(π/2)+πn,  n∈Z  ⇒    x=(π/4)+(π/2)n, n∈ Z
ответ. Область определения: x≠πk,  k∈Z
                                               x≠(π/4)+(π/2)n, n∈ Z
 
0,0(0 оценок)
Ответ:
Lizkic
Lizkic
01.06.2023 07:53
1) ( x + 2)² = 4( x + 4)
x² + 4x + 4 = 4x + 16
x² + 4x - 4x = 16 - 4
x² = 12
x = √12
x = - √12

2) 4( x - 1)² = ( x+ 2)²
4( x² - 2x + 1) = x² + 4x + 4
4x² - 8x + 4 - x² - 4x - 4 = 0
3x² - 12x = 0
3x( x - 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
3x = 0
x = 0
x - 4 = 0
x = 4

3) ( 3x - 1)² = 3( 1 - 2x)
9x² - 6x + 1 = 3 - 6x
9x² - 6x + 6x = 3 - 1
9x² = 2
9x² - 2 = 0
D = b² - 4ac = 0 - 4×9×(-2) = 72
x1 = ( 0 + √72) / 18 = √9×8 / 18 = 3√8 / 18 = √8 / 6 = 2√2 / 6 = √2 / 3
x2 = - √2 / 3
ответ: +/ - √2 / 3.

4) ( x + 3)² = 3( x + 1)
x² + 6x + 9 = 3x + 3
x² + 6x - 3x + 9 - 3 = 0
x² + 3x + 6 = 0
D= b² - 4ac = 9 - 4×6 = 9 - 24 = - 15 - дискриминант отрицательный,значит,корней нет.
ответ: корней нет.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота