Двоє робітників разом виготовили 740 деталей. Перший працівник трудився 11 днів(і), а другий — 10 днів(і).
Скільки деталей виготовляв кожен робітник за один день, якщо другий працівник за 2 дні виготовляв на 60 деталей менше, ніж перший робітник за 3 дні?
Нехай x деталей у день виготовляв перший працівник, а другий - y деталей у день. Обери потрібну математичну модель
ответ: для начала нам надо найти точки экстремума. для этого найдем производную и приравняем её к 0. получаем -3х^3-2х+5 =0. получаем корни и запоминаем их. далее нам надо найти интеграл от этой производной. поскольку нам крупно повезло мы получаем функцию аналогичную начальной. подставляя числа в промежутке от -5 до 2 получаем такой график функции, при этом, не забываем про производную которую мы находили и проверяем попали ли высоты в значения производной по оси Х, потом подставляем производную в начальное уравнение и получаем значения по У. подставляем эти значения в оси и получаем места перегиба графика. у нас всё получилось
Два натуральных числа 16; 24.
Объяснение:
Найти два натуральных числа по заданным условиям.
Пусть первое число равно x, а второе равно y.
Тогда сумма их квадратов: x² + y² = 832,
а их произведение xy = 384.
Чтобы найти эти числа, решим систему уравнений.
Умножим обе части второго уравнения системы на 2.
Сложим оба уравнения системы:
Свернем левую часть уравнения по формуле квадрата суммы двух выражений:
Получим следующую систему уравнений:
Извлечем квадратный корень из обеих частей первого уравнения.
С учетом того, что нам даны натуральные числа, получим следующую систему уравнений:
Выразим переменную y через x в первом уравнении и подставим полученное выражение во второе уравнение.
Решим второе уравнение системы.
Тогда
Заданные натуральные числа 16 и 24.