2) f(x) =x / 16 + x^2
У дроби знаменатель не должен никогда равнятся нулю, так как на ноль делить нельзя, поэтому
16+х^2 не равно 0
х^2 не равно 16
х не равен +-4
Тут надо нарисовать ось Х(забыла как называется), на ней отметить точки 4 и -4 и записать полученный интервал(будет на фото)
D(y)=(-4;4)-это ответ
3)f(x) =корень из х^2 – 2,25
Здесь работает другое правило:подкоренное выражение всегда больше или равно нулю.
х^2-2,25 больше или равно 0
х^2 больше или равно 2,25
х больше или равно +-1,5
Здесь тоже надо нарисовать ось Х, отметить полученные точки и написать ответ(будет на фото)
D(y) =(1,5;+бесконечности)
√(2x + 3y) + √(2x - 3y) = 10
√(4x² - 9y²) = 16
2x - 3y ≥ 0
2x + 3y ≥ 0
√(2x + 3y) = a ≥ 0
√(2x - 3y) = b ≥ 0
a + b = 10
ab = 16
a = 10 - b
(10 - b)b = 16
10b - b² = 16
b² - 10b + 16 = 0
D = 100 - 64 = 36
b12 = (10 +- 6)/2 = 2 8
1. b1 = 2
a1 = 10 - b1 = 8
√(2x + 3y) = 8
√(2x - 3y) = 2
---
2x + 3y = 64
2x - 3y = 4
4x = 68
x = 17
2*17 + 3y = 64
3y = 30
y = 10
2x - 3y = 34 - 30 > 0
2x + 3y = 64 > 0
2. b2 = 8
a2 = 10 - b2 = 2
√(2x + 3y) = 2
√(2x - 3y) = 8
2x + 3y = 4
2x - 3y = 64
2*17 - 3y = 64
-3y = 30
y = -10
2x - 3y = 34 + 30 > 0
2x + 3y = 34 - 30 = 4 > 0
ответ (17, 10) (17, -10)
2) f(x) =x / 16 + x^2
У дроби знаменатель не должен никогда равнятся нулю, так как на ноль делить нельзя, поэтому
16+х^2 не равно 0
х^2 не равно 16
х не равен +-4
Тут надо нарисовать ось Х(забыла как называется), на ней отметить точки 4 и -4 и записать полученный интервал(будет на фото)
D(y)=(-4;4)-это ответ
3)f(x) =корень из х^2 – 2,25
Здесь работает другое правило:подкоренное выражение всегда больше или равно нулю.
х^2-2,25 больше или равно 0
х^2 больше или равно 2,25
х больше или равно +-1,5
Здесь тоже надо нарисовать ось Х, отметить полученные точки и написать ответ(будет на фото)
D(y) =(1,5;+бесконечности)
√(2x + 3y) + √(2x - 3y) = 10
√(4x² - 9y²) = 16
2x - 3y ≥ 0
2x + 3y ≥ 0
√(2x + 3y) = a ≥ 0
√(2x - 3y) = b ≥ 0
a + b = 10
ab = 16
a = 10 - b
(10 - b)b = 16
10b - b² = 16
b² - 10b + 16 = 0
D = 100 - 64 = 36
b12 = (10 +- 6)/2 = 2 8
1. b1 = 2
a1 = 10 - b1 = 8
√(2x + 3y) = 8
√(2x - 3y) = 2
---
2x + 3y = 64
2x - 3y = 4
4x = 68
x = 17
2*17 + 3y = 64
3y = 30
y = 10
2x - 3y = 34 - 30 > 0
2x + 3y = 64 > 0
2. b2 = 8
a2 = 10 - b2 = 2
√(2x + 3y) = 2
√(2x - 3y) = 8
---
2x + 3y = 4
2x - 3y = 64
4x = 68
x = 17
2*17 - 3y = 64
-3y = 30
y = -10
2x - 3y = 34 + 30 > 0
2x + 3y = 34 - 30 = 4 > 0
ответ (17, 10) (17, -10)