Пусть Р - данный периметр сектора, R - радиус круга, α - угол сектора. P = 2R + πRα/180° (сектор ограничен двумя радиусами и дугой, второе слагаемое - длина дуги) πRα/180° = P - 2R α = 180°(P - 2R)/(πR) S = πR²α/360° S = πR²180°(P - 2R)/(360°πR) = R(P - 2R)/2 = 1/2 · PR - R² Рассмотрим площадь как функцию от радиуса: S(R) = - R² + PR/2 График - парабола, ветви которой направлены вниз. Значит, наибольшее значение функция принимает в вершине. Найдем абсциссу вершины: R₀ = (- P/2) / (- 2) = P/4 Т.е. наибольшее значение площади будет у сектора, радиус которого равен четверти от периметра. S = 1/2 · P · P/4 - (P/4)² = P²/8 - P²/16 = P²/8
Для начала найдем производную функции y'=(x^2)'*ln x+x^2*(ln x)' y'=2x*ln x+x^2*(1/x) y'=2x*ln x+x Что бы найти экстремумы приравняем производную к нулю 2x*ln x+x=0 x(2*ln x+1)=0 2*ln x+1=0 x=0 это первый корень 2*ln x=-1 ln x= -1/2 x= e^(-1/2) x=1/√e получаем два корня x=0 и x=1/√e Начертим график и посчитаем интервалы монотонности Так как у нас ln x то область определения y' x>0 по этому за ее пределами мы знаки не считаем Исходя из графика видно, что при x э (0;1/√e) функция убывает т.к. производная на данном интервале отрицательная, а на интервале (1/√e;+∞) функция возрастает т.к. производная на данном интервале положительная. У нас имеется одна точка экстремума x=1/√e, и она является точкой минимума так как в ней производная меняет знак с - на +, то есть функция перестает убывать и начинает расти.
P = 2R + πRα/180° (сектор ограничен двумя радиусами и дугой, второе слагаемое - длина дуги)
πRα/180° = P - 2R
α = 180°(P - 2R)/(πR)
S = πR²α/360°
S = πR²180°(P - 2R)/(360°πR) = R(P - 2R)/2 = 1/2 · PR - R²
Рассмотрим площадь как функцию от радиуса:
S(R) = - R² + PR/2
График - парабола, ветви которой направлены вниз. Значит, наибольшее значение функция принимает в вершине. Найдем абсциссу вершины:
R₀ = (- P/2) / (- 2) = P/4
Т.е. наибольшее значение площади будет у сектора, радиус которого равен четверти от периметра.
S = 1/2 · P · P/4 - (P/4)² = P²/8 - P²/16 = P²/8
y'=(x^2)'*ln x+x^2*(ln x)'
y'=2x*ln x+x^2*(1/x)
y'=2x*ln x+x
Что бы найти экстремумы приравняем производную к нулю
2x*ln x+x=0
x(2*ln x+1)=0
2*ln x+1=0 x=0 это первый корень
2*ln x=-1
ln x= -1/2
x= e^(-1/2)
x=1/√e
получаем два корня x=0 и x=1/√e
Начертим график и посчитаем интервалы монотонности
Так как у нас ln x то область определения y' x>0 по этому за ее пределами мы знаки не считаем
Исходя из графика видно, что при x э (0;1/√e) функция убывает т.к. производная на данном интервале отрицательная, а на интервале (1/√e;+∞) функция возрастает т.к. производная на данном интервале положительная.
У нас имеется одна точка экстремума x=1/√e, и она является точкой минимума так как в ней производная меняет знак с - на +, то есть функция перестает убывать и начинает расти.