Через вершину C прямоугольника ABCD проведена прямая, параллельная диагонали BD и пересекающая прямую AB в точке M. Через точку M проведена прямая, параллельная диагонали AC и пересекающая прямую BC в точке N. Найдите периметр четырехугольника ACMN, если диагональ BD равна 8 см
–––––––––––––––
Казалось бы очевидно- стороны четырехугольника ACMN равны между собой и равны диагоналям прямоугольника. Тем не менее это нужно доказать.
МС║ВD по построению.
АВ║ СD - стороны прямоугольника, след, ВМ║СD
Противоположные стороны четырехугольника МВСД лежат на параллельных прямых. ⇒
МВДС - параллелограмм.⇒
ВМ=СD. Но СD=АВ ⇒ ВМ=АВ.
СN ⊥ АМ и делит ее пополам. СВ - высота и медиана ∆ АСМ,⇒
∆ АСМ равнобедренный, и СВ его биссектриса.
В ∆ АМN отрезок NB – медиана и высота ⇒
∆ МАN равнобедренный, и BN- его биссектриса.
AN= MN, a MN=MC=AC
∠АМN =∠MАС как накрестлежащие при параллельных МN и АC и секущей АМ.
Но углы равнобедренного ∆ САМ при АМ равны.⇒∠ АМN=∠СМА=∠САМ ,
МВ ⊥ СN⇒ является высотой ∆ NMC и оо равенству углов при М - биссектрисой. ⇒
NMC - равнобедренный, и NM=MC, отсюда следует равенство AN=MN=MC=АС
Четырехугольник АСМN- ромб.
АС- диагональ прямоугольника ABCD и по условию равна 8
Через вершину C прямоугольника ABCD проведена прямая, параллельная диагонали BD и пересекающая прямую AB в точке M. Через точку M проведена прямая, параллельная диагонали AC и пересекающая прямую BC в точке N. Найдите периметр четырехугольника ACMN, если диагональ BD равна 8 см
–––––––––––––––
Казалось бы очевидно- стороны четырехугольника ACMN равны между собой и равны диагоналям прямоугольника. Тем не менее это нужно доказать.
МС║ВD по построению.
АВ║ СD - стороны прямоугольника, след, ВМ║СD
Противоположные стороны четырехугольника МВСД лежат на параллельных прямых. ⇒
МВДС - параллелограмм.⇒
ВМ=СD. Но СD=АВ ⇒ ВМ=АВ.
СN ⊥ АМ и делит ее пополам. СВ - высота и медиана ∆ АСМ,⇒
∆ АСМ равнобедренный, и СВ его биссектриса.
В ∆ АМN отрезок NB – медиана и высота ⇒
∆ МАN равнобедренный, и BN- его биссектриса.
AN= MN, a MN=MC=AC
∠АМN =∠MАС как накрестлежащие при параллельных МN и АC и секущей АМ.
Но углы равнобедренного ∆ САМ при АМ равны.⇒∠ АМN=∠СМА=∠САМ ,
МВ ⊥ СN⇒ является высотой ∆ NMC и оо равенству углов при М - биссектрисой. ⇒
NMC - равнобедренный, и NM=MC, отсюда следует равенство AN=MN=MC=АС
Четырехугольник АСМN- ромб.
АС- диагональ прямоугольника ABCD и по условию равна 8
Периметр АСМN=8*4=32
4х-6х=7+13
-2х=20
х=20/-2
х=10
5(х+3)=12,5х
5х+15=12,5х
5х-12,5х=-15
-7,5х=-15
х=-15/-7,5
х=2
14+5х=4х+3
5х-4х=3-14
х=-11
3а+5=8а-15
3а-8а=-15-5
-5а=-20
а=-20/-5
а=4
3,6+2х=5х+1,2
2х-5х=1,2-3,6
-3х=-2,4
х=-2,4/-3
х=0,8
4,2-2х=5,4+3х
-2х-3х=5,4-4,2
-5х=1,2
х=1,2/-5
х=-0,24
4(3-2х)+24=2(3+2х)
12-8х+24=6+4х
-8х-4х=6-12-24
-12х=-30
х=-30/-12
х=2,5
0,2(5у-2)=0,3(2у-1)-0,37
у-0,4=0,6у-0,3-0,37
у-0,6у=-0,3-0,37+0,4
0,4у=-0,27
у=-0,27/0,4
у=-0,675
P.S- /-это деление
P.S.S- последние 2 не могу решить точно,т.к в знаках я путаюсь,и могу сделать ошибку(