Решение: Обозначим за х км/час -скорость теплохода, тогда по течению скорость теплохода составит: х+3 (км/час); против течения: х-3 (км/час), скорость теплохода по озеру составляет : х км/час Зная, что время находится по формуле: t=S/V , тогда теплоход проплыл ро течению: 7/(х+3) часа, а против течения 15/(х-3) часа и учитывая, что время в пути по реке и озеру согласно условию задачи было одинаковым, составим уравнение: 7/(х+3)+15/(х-3)-24/х Решим это уравнение. Прведём его к общему знаменателю: 7*(х-3)*х+15(х+3)*х=24*(х-3)*(х+3) 7х^2-21x+15x^2+45x=24x^2-216 7x^2+15x^2-24x^2-21x+45x+216=0 -2x^2+24x+216=0 Перейдём от биквадратного уравнения к простому квадратному уравнению разделив его на (-2) х^2-12x-108=0 x1,2=12/2+-sqrt(36+108)=6+-sqrt144=6+-12 х1= 6+12-18 х2=6-12=-6 ( не соответствует условию задачи)
Скорость теплохода х равна 18км/час, а по течению реки: 18 км/час+3км/час=21 км/час
Пусть одна сторона прямоугольника равна х см, а другая сторона прямоугольника равна у см.
Площадь прямоугольника S = x·y = 51 см²
Периметр прямоугольника P = 2 (x + y) = 40 см
Из формулы периметра выразим одну из сторон.
2 (x + y) = 40; ⇒ x + y = 20; ⇒ y = 20 - x
Подставим полученный у в уравнение площади
x·y = 51; ⇒ x (20 - x) = 51; ⇒ 20x - x² = 51; | × (-1)
x² - 20x + 51 = 0
x₁ = 10 - 7 = 3; x₂ = 10 + 7 = 17;
y₁ = 20 - 3 = 17; y₂ = 20 - 17 = 3
ответ: стороны прямоугольника равны 3 см и 17 см
Обозначим за х км/час -скорость теплохода, тогда по течению скорость теплохода составит: х+3 (км/час); против течения: х-3 (км/час), скорость теплохода по озеру составляет : х км/час
Зная, что время находится по формуле: t=S/V , тогда теплоход проплыл ро течению: 7/(х+3) часа, а против течения 15/(х-3) часа и учитывая, что время в пути по реке и озеру согласно условию задачи было одинаковым, составим уравнение:
7/(х+3)+15/(х-3)-24/х
Решим это уравнение. Прведём его к общему знаменателю:
7*(х-3)*х+15(х+3)*х=24*(х-3)*(х+3)
7х^2-21x+15x^2+45x=24x^2-216
7x^2+15x^2-24x^2-21x+45x+216=0
-2x^2+24x+216=0 Перейдём от биквадратного уравнения к простому квадратному уравнению разделив его на (-2)
х^2-12x-108=0
x1,2=12/2+-sqrt(36+108)=6+-sqrt144=6+-12
х1= 6+12-18
х2=6-12=-6 ( не соответствует условию задачи)
Скорость теплохода х равна 18км/час, а по течению реки: 18 км/час+3км/час=21 км/час
ответ: 21 км/час