Очевидно, что наибольшее и наименьшее значения функции совпадают с обратными к наименьшим и наибольшим (соответственно) значениям функции x^2+1
Наименьшее значение эта функция принимает при х=0 и это значение равно 1.
Значит у исходной функции это наибольшее значение.
при х больше 0 функция монотонно возрастает, при х меньше 0 монотонно убывает. Значит , сравнив значения на краях отрезка заключем, что наибольшее значение достигается при х=-1 и равно 2.
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)
Наименьшее значение 0,5 (при х=-1)
Наибольшее значение 1 (при х=0)
Объяснение:
Очевидно, что наибольшее и наименьшее значения функции совпадают с обратными к наименьшим и наибольшим (соответственно) значениям функции x^2+1
Наименьшее значение эта функция принимает при х=0 и это значение равно 1.
Значит у исходной функции это наибольшее значение.
при х больше 0 функция монотонно возрастает, при х меньше 0 монотонно убывает. Значит , сравнив значения на краях отрезка заключем, что наибольшее значение достигается при х=-1 и равно 2.
Наименьшее значение исходной функции равно 1/2.