Экзаменационная работа по за курс основной школыза 2018-2019 учебный год.9 класс (3 часа)вариант 1.( 351,51. решите уравнение: 3(62012)63 1,4 1,8 31.5 32. решите : фермер собрал с двух участков 460 т клевера. на второй год на первомучастке урожай увеличился на 15%, а на втором - на 10% и общийурожай клевера составил 5 16 т. сколько тонн клевера было собрано скаждого участка в перівый год? 3. выражение: cos (-а) + cos (+а) - cos a4. в одной координатной плоскости постройте графики функций у = х2,y = (х – 3)2; у = х2 - 35. решите неравенство — < 114. —x
Объяснение:1)Бросают игральный кубик Определите вероятность появления на верхней грани: а) числа 1; общее число исходов в задаче n=6. Решаем все по формуле: Р(А)=m/n, благоприятных исходов m, число всех исходов n.
Число 1 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет 1 очко.
б)числа 2; Число 2 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет число 2.
в) нечетного числа; общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 1, 3 или 5 очками (только ytчетные), таких граней m=3. Тогда искомая вероятность равна P=3/6=1/2=0.5.
г)числа 1 или 2; Если при бросании игрального кубика выпало 1 или 2, т.е. удовлетворяют 2 исхода, m=2. Нужная вероятность равна P=2/6=1/3=0.333.
д) числа 8; благоприятный исход отсутствует (числа 8 нет на кубике), значит m=0, поэтому Р=0/6 =0
е) числа 1 или 2 или 3 или 4 или 5 или 6 . Благоприятных исходов может быть 6, значит m=6, тогда P=6/6=1.
2)подбрасывают монету. Определите вероятность выпадения: а) орла / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
б) решки / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
в)Орла и решки / Благоприятных исходов может быть 2, значит m=2, тогда P=2/2=1/.
г)ни Орла ни решки /благоприятный исход отсутствует , значит m=0, поэтому Р=0/2 =0
3)Из ящика Где находится 4 черных и 5 белых шаров вынимают Один шар .Какова вероятность того что вынут:
а) черный шар / m=4+5=9, n=4, Р=4/9
б) белый шар / m=4+5=9, n=5, Р=5/9
4) из 28 костей Домино выбирают наугад одну кость. Какова вероятность выбрать с суммы очков:
а) 0
б) 4
в)7
г) 13
5)Бросают два игральных кубика .Какова вероятность выпадения суммы чисел равной: Всего таких пар чисел будет n=6⋅6=36
а) 3 / Число 3 может выпасть 2 раза, значит Р=2/36=1/18
б) 9 / Число 9 может выпасть 4 раза, значит Р=4/36=1/9
в) 12 / Число 12 может выпасть 1 раз, значит Р=1/36
г)14 / Число 14 не может выпасть, m=0, значит Р=0/36=0
6)выполняет тест по математике ученик не успевает в определённое время выполнить одно задание Какова вероятность того что ученик угадать правильный ответ если из 5 возможных ответов только один правильный и выбор каждого из ответов события равновозможные? Р=1/5=0,2
7) ученик задумал однозначное натуральное число другой ученик пытается его отгадать. Какова вероятность угадать число с первой попытки? / Всего однозначных натуральных чисел 9 (1, 2, 3, ..,9), значит Р=1/9
1). 7x² - 8x²y - 3yz + *
Известная часть многочлена: 7x² - 8х²y - 3yz
Если из данной части вывести переменную х, добавив вместо звездочки, скажем, -(7x² - 8х²y), то останется выражение -3yz, не являющееся многочленом по определению.
Поэтому добавим к оставшемуся выражению -3yz еще у²:
7x² - 8x²y - 3yz + * = -3уz + у²
* = -3yz + y² - 7x² + 8x²y + 3yz
* = y² - 7x² + 8x²y
Вместо у² можно взять любой другой одночлен, не содержащий переменную х.
2). (3n + 8) - (6 - 2n) = 3n + 8 - 6 + 2n = 5n + 2
При любом n ∈ N, выражение 5n + 2 при делении на 5 даст остаток 2.