Исследовать функцию: • Область определения функции:
• Точки пересечения с осью Ох и Оу: Точки пересечения с осью Ох: нет. Точки пересечения с осью Оу: Нет. • Периодичность функции. Функция не периодическая. • Критические точки, возрастание и убывание функции: 1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума х=1 - точка минимума
f(1) = 1 - Относительный минимум f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
• Область определения функции:
• Точки пересечения с осью Ох и Оу:
Точки пересечения с осью Ох: нет.
Точки пересечения с осью Оу: Нет.
• Периодичность функции.
Функция не периодическая.
• Критические точки, возрастание и убывание функции:
1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума
х=1 - точка минимума
f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
• Точка перегиба:
Очевидно что точки перегиба нет, т.к.
• Вертикальные асимптоты:
• Горизонтальные асимптоты:
• Наклонные асимптоты:
График приложен
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число