Эпиграф урока "На земле существует только красота, в красоте главное - форма, идеальная форма – это идеальные пропорции, пропорции состоят из чисел. Вывод: красота – это числа" А. Августин
Сегодня на уроке мы продолжим изучать формулы сокращенного умножения, получим новую формулу и попробуем её, применить к решению упражнений
Произведение, квадрат числа, возведение в квадрат или во вторую степень


Решения заданий по теме урока


Выполни: № 32.1(2,4,6,8), № 32.2(2,4,6,8)
Домашнее задание.
стр.198-199формулы; № 32.1(1,3,5,7), № 32.2(1,3,5,7)
7 x2 -5 x - 2 = 0
Находим дискриминант:
D=(-5)2 - 4·7·(-2)=81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 5 - √81 2·7 = 5 - 9 14 = -4 14 = - 2 7 ≈ -0.2857142857142857
x2 = 5 + √81 2·7 = 5 + 9 14 = 14 14 = 1
8x2 - 5x - 3 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-5)2 - 4·8·(-3) = 25 + 96 = 121
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 5 - √121 2·8 = 5 - 11 16 = -6 16 = -0.375
x2 = 5 + √121 2·8 = 5 + 11 16 = 16 16 = 1
x2 + 9x - 2 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 92 - 4·1·(-2) = 81 + 8 = 89
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -9 - √89 2·1 ≈ -9.2170
x2 = -9 + √89 2·1 ≈ 0.21699
x2 - 9x + 2 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-9)2 - 4·1·2 = 81 - 8 = 73
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 9 - √73 2·1 ≈ 0.22800
x2 = 9 + √73 2·1 ≈ 8.7720
Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей